論文の概要: Chemical Shift Encoding based Double Bonds Quantification in Triglycerides using Deep Image Prior
- arxiv url: http://arxiv.org/abs/2407.01926v3
- Date: Thu, 25 Jul 2024 06:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:37:36.639503
- Title: Chemical Shift Encoding based Double Bonds Quantification in Triglycerides using Deep Image Prior
- Title(参考訳): 深部画像を用いたトリグリセリドの化学シフトエンコーディングに基づく二重結合定量
- Authors: Chaoxing Huang, Ziqiang Yu, Zijian Gao, Qiuyi Shen, Queenie Chan, Vincent Wai-Sun Wong, Winnie Chiu-Wing Chu, Weitian Chen,
- Abstract要約: 本研究では, 化学シフトエンコードされたマルチエコ勾配エコー画像からトリグリセリド二重結合をネットワークトレーニングなしで定量化する深層学習法について検討した。
信号制約に基づいたコスト関数を用いて、ニューラルネットワークを1つのデータセットで反復的に更新する。
その結果,Pearson相関係数は0.96。
- 参考スコア(独自算出の注目度): 1.5933094380194248
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This study evaluated a deep learning-based method using Deep Image Prior (DIP) to quantify triglyceride double bonds from chemical-shift encoded multi-echo gradient echo images without network training. We employed a cost function based on signal constraints to iteratively update the neural network on a single dataset. The method was validated using phantom experiments and in vivo scans. Results showed close alignment between measured and reference double bond values, with phantom experiments yielding a Pearson correlation coefficient of 0.96 (p = .0005). In vivo results demonstrated good agreement in subcutaneous fat. We conclude that Deep Image Prior shows feasibility for quantifying double bonds and fatty acid content from chemical-shift encoded multi-echo MRI.
- Abstract(参考訳): 本研究では,Deep Image Prior (DIP) を用いた深層学習による化学シフト符号化多面勾配エコー画像からのトリグリセリド二重結合の定量化について検討した。
信号制約に基づいたコスト関数を用いて、ニューラルネットワークを1つのデータセットで反復的に更新する。
本法はファントム実験と生体内スキャンを用いて検証した。
結果は測定値と基準二重結合値の密接な一致を示し、ファントム実験によりピアソン相関係数は 0.96 (p = .0005) となった。
In vivoでは皮下脂肪が良好であった。
Deep Image Priorは, 化学シフト型多面体MRIから二重結合および脂肪酸含有量を定量化できる可能性が示唆された。
関連論文リスト
- Transesophageal Echocardiography Generation using Anatomical Models [0.5679566039341877]
合成TEE画像と対応するセマンティックラベルを生成するパイプラインを開発する。
In the pipeline's unpaired image-to-image (I2I) translation section, we explore two generative methods。
合成画像を用いてデータセットを拡大すると、ダイススコアが最大10%向上する。
論文 参考訳(メタデータ) (2024-10-09T11:20:28Z) - Uncertainty Estimation in Contrast-Enhanced MR Image Translation with
Multi-Axis Fusion [6.727287631338148]
我々は,新しいモデル不確実性定量化手法であるマルチ軸核融合(MAF)を提案する。
提案手法は,T1,T2,T2-FLAIRスキャンに基づくコントラスト強調T1強調画像の合成に応用される。
論文 参考訳(メタデータ) (2023-11-20T20:09:48Z) - Moving beyond simulation: data-driven quantitative photoacoustic imaging
using tissue-mimicking phantoms [1.5006258585503878]
実験的に良好な画像ファントムとそのデジタル双生児のコレクションを紹介する。
この第1種ファントムデータセットは、吸収係数のピクセルワイズ推定のための実験データに基づくU-Netの教師付きトレーニングを可能にする。
シミュレーションデータによるトレーニングは, シミュレーションと実験の間の領域ギャップを補強し, 評価の成果とバイアスをもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-11T19:12:30Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
2つ以上のフォトニック自由度(DOF)の間の超絡み合いは、新しい量子プロトコルを強化し有効にすることができる。
パルスモードと周波数ビンとの間に超絡み合った光子対の生成を実証する。
論文 参考訳(メタデータ) (2023-04-24T15:43:08Z) - TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted
Diffusion Tensor Imaging [32.02624872108258]
本稿では,DTIスライスを塗布する3D-Wise-Aware Gate Network (TW-BAG)を提案する。
提案手法をHuman Connectome Project (HCP) データセット上で評価した。
実験の結果,提案手法は脳のDTI容積を再構築し,関連性のある臨床画像情報を復元できることが示唆された。
論文 参考訳(メタデータ) (2022-10-31T05:53:02Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
我々は、コヒーレント場によって駆動される相互作用する2つの非負の量子エミッタのシステムについて研究する。
共鳴蛍光スペクトルに2光子ダイナミクスによって印加された特徴は、エミッタ間の距離の変化に特に敏感である。
これは、ポイントライクなソースの超解像イメージングのような応用に利用することができる。
論文 参考訳(メタデータ) (2021-06-04T16:13:01Z) - Quantitative Complementarity of Wave-Particle Duality [0.0]
ソース純度 $mu_s$ は、エンタングルメント測度 $E$ と、可視性 $V$ と検出器忠実度 $F$ により、量子子のコヒーレンスを決定できることが示される。
私たちが最近開発した二重パス干渉計の定量的相補性は、量子子エンタングルメントや量子子源純度の観点から説明される。
論文 参考訳(メタデータ) (2021-04-09T07:45:13Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
機械学習にインスパイアされた変分法は、量子シミュレータのスケーラブルな状態キャラクタリゼーションへの有望な経路を提供する。
本研究では,2ビットの絡み合った状態を生成する実験から得られた測定データに適用することにより,いくつかの手法をベンチマークし比較する。
実験的な不完全性やノイズの存在下では、変動多様体を物理状態に収束させることで、再構成された状態の質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-07-31T17:25:12Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。