論文の概要: ViG-Bias: Visually Grounded Bias Discovery and Mitigation
- arxiv url: http://arxiv.org/abs/2407.01996v1
- Date: Tue, 2 Jul 2024 07:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 16:24:25.283369
- Title: ViG-Bias: Visually Grounded Bias Discovery and Mitigation
- Title(参考訳): ViG-Bias:ビジュアルなバイアス発見と緩和
- Authors: Marani Badr-Eddine, Hanini Mohamed, Malayarukil Nihitha, Christodoulidis Stergios, Vakalopoulou Maria, Ferrante Enzo,
- Abstract要約: 視覚的基底バイアス発見・緩和(ViG-Bias)を導入し,発見・緩和性能の向上を図る。
視覚的説明を取り入れることで、DOMINO、FACTS、Bias-to-Textといった既存の手法が強化されることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
- Abstract(参考訳): 批判的な意思決定プロセスにおける機械学習モデルの拡散は、バイアス発見と緩和戦略の必要性を浮き彫りにした。
バイアスのあるシステムの背後にある理由を特定するのは簡単ではない。
標準的なアプローチは、事前に定義されたデータサンプルのサブグループでモデルパフォーマンスを分析することで実行されるバイアス監査に頼っている。
しかし、視覚認識システムの障害モードを定義する特定の属性をa-prioriで知ることは必ずしも不可能である。
近年のアプローチでは, 大規模な視覚言語モデルを用いて, クロスモーダルな埋め込みの抽出とテキスト記述の生成を可能とし, 特定のモデルが不十分な部分群を特徴付ける手法が提案されている。
本研究では、視覚的説明(例えば、GradCAMなどの手法で生成したヒートマップ)を取り入れることで、そのようなバイアス発見や緩和フレームワークの性能を高めることができると論じる。
この目的のために、我々はVisually Grounded Bias Discovery and Mitigation (ViG-Bias)を紹介した。
我々の総合的な評価は、ビジュアルな説明を取り入れることで、CelebA、Waterbirds、NICO++など、いくつかの挑戦的なデータセットをまたいだDOMINO、FACTS、Bias-to-Textといった既存のテクニックが強化されることを示している。
関連論文リスト
- A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
RCPMOD(Regularized Contrastive partial Multi-view Outlier Detection)と呼ばれる新しい手法を提案する。
このフレームワークでは、コントラスト学習を利用して、ビュー一貫性のある情報を学び、一貫性の度合いでアウトレイラを識別する。
4つのベンチマークデータセットによる実験結果から,提案手法が最先端の競合より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-02T14:34:27Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Model-Agnostic Few-Shot Open-Set Recognition [36.97433312193586]
我々はFew-Shot Open-Set Recognition (FSOSR) 問題に取り組む。
既存のモデルにプラグイン可能なモデルに依存しない推論手法の開発に注力する。
オープン・セット・トランスダクティブ・インフォメーション・最大化手法OSTIMを提案する。
論文 参考訳(メタデータ) (2022-06-18T16:27:59Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。