論文の概要: TrAME: Trajectory-Anchored Multi-View Editing for Text-Guided 3D Gaussian Splatting Manipulation
- arxiv url: http://arxiv.org/abs/2407.02034v2
- Date: Wed, 21 Aug 2024 02:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 22:05:55.941560
- Title: TrAME: Trajectory-Anchored Multi-View Editing for Text-Guided 3D Gaussian Splatting Manipulation
- Title(参考訳): TrAME:テキスト誘導型3Dガウス平滑マニピュレーションのための軌道対応マルチビュー編集
- Authors: Chaofan Luo, Donglin Di, Xun Yang, Yongjia Ma, Zhou Xue, Chen Wei, Yebin Liu,
- Abstract要約: TAS(Trajectory-Anchored Scheme)による複数ビューの整合性を保証するプログレッシブな3D編集戦略を提案する。
TASは2Dビュー編集と3D更新の間に密結合された反復プロセスを促進し、テキスト・ツー・イメージ・プロセスから得られるエラーの蓄積を防ぐ。
本稿では,2次元ビューの編集中に,ソースブランチからのクロスビューセマンティクスと幾何参照を利用して,対象ブランチからアライメントされたビューを出力する,調整不要なビュー一貫性注意制御(VCAC)モジュールを提案する。
- 参考スコア(独自算出の注目度): 35.951718189386845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant strides in the field of 3D scene editing, current methods encounter substantial challenge, particularly in preserving 3D consistency in multi-view editing process. To tackle this challenge, we propose a progressive 3D editing strategy that ensures multi-view consistency via a Trajectory-Anchored Scheme (TAS) with a dual-branch editing mechanism. Specifically, TAS facilitates a tightly coupled iterative process between 2D view editing and 3D updating, preventing error accumulation yielded from text-to-image process. Additionally, we explore the relationship between optimization-based methods and reconstruction-based methods, offering a unified perspective for selecting superior design choice, supporting the rationale behind the designed TAS. We further present a tuning-free View-Consistent Attention Control (VCAC) module that leverages cross-view semantic and geometric reference from the source branch to yield aligned views from the target branch during the editing of 2D views. To validate the effectiveness of our method, we analyze 2D examples to demonstrate the improved consistency with the VCAC module. Further extensive quantitative and qualitative results in text-guided 3D scene editing indicate that our method achieves superior editing quality compared to state-of-the-art methods. We will make the complete codebase publicly available following the conclusion of the review process.
- Abstract(参考訳): 3Dシーン編集の分野では大きな進歩があったが、現在の手法は特に多視点編集プロセスにおける3D一貫性の維持において大きな課題に直面している。
この課題に対処するために,2重ブランチ編集機構を備えたTrajectory-Anchored Scheme (TAS) による複数ビューの整合性を保証するプログレッシブ3次元編集手法を提案する。
具体的には、TASは2次元ビュー編集と3次元更新の間に密結合された反復プロセスを促進し、テキスト・ツー・イメージ・プロセスから得られるエラーの蓄積を防止する。
さらに,最適化手法と再構成手法の関係を考察し,優れた設計選択を選択するための統一的な視点を提供し,設計されたTASの背後にある理論的根拠を支持する。
さらに,2次元ビューの編集中に,ソースブランチからのクロスビューセマンティクスと幾何参照を活用して,対象ブランチからアライメントされたビューを出力する,調整不要なビュー一貫性注意制御(VCAC)モジュールを提案する。
提案手法の有効性を検証するため,VCACモジュールとの整合性向上を実証するために2次元例を分析した。
テキスト誘導3Dシーン編集における定量的および定性的な結果から,本手法は最先端の手法に比べて優れた編集品質が得られることが示唆された。
レビュープロセスの完了後、完全なコードベースを公開します。
関連論文リスト
- SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing [58.22339174221563]
高忠実度3Dシーン編集のための新しい幾何誘導型マルチビュー一貫したノイズ編集手法SyncNoiseを提案する。
SyncNoiseは2次元拡散モデルで複数のビューを同期的に編集し、幾何的に一貫した多視点ノイズ予測を行う。
本手法は,特に複雑なテクスチャを持つシーンにおいて,テキストの指示に配慮した高品質な3D編集結果を実現する。
論文 参考訳(メタデータ) (2024-06-25T09:17:35Z) - DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing [72.54566271694654]
オープンな言語命令に基づいて3Dオブジェクトやシーンを編集する際の問題点を考察する。
この問題に対する一般的なアプローチは、3D編集プロセスをガイドするために2Dイメージジェネレータまたはエディタを使用することである。
このプロセスは、コストのかかる3D表現の反復的な更新を必要とするため、しばしば非効率である。
論文 参考訳(メタデータ) (2024-04-29T17:59:30Z) - View-Consistent 3D Editing with Gaussian Splatting [50.6460814430094]
View-Consistent Editing (VcEdit)は、3DGSをシームレスに画像編集プロセスに組み込む新しいフレームワークである。
一貫性モジュールを反復パターンに組み込むことで、VcEditはマルチビューの不整合の問題を十分に解決する。
論文 参考訳(メタデータ) (2024-03-18T15:22:09Z) - GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing [38.948892064761914]
GaussCtrlは、3D Gaussian Splatting(3DGS)によって再構成された3Dシーンを編集するテキスト駆動方式である。
私たちの重要な貢献は、複数ビューの一貫性のある編集であり、1つの画像を反復的に編集する代わりに、すべての画像を一緒に編集できる。
論文 参考訳(メタデータ) (2024-03-13T17:35:28Z) - Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
本研究では,空間制御に基づく幾何学的操作に着目し,様々な視点にまたがって編集プロセスを統合する手法を提案する。
編集画像の内部クエリ機能に基づいて訓練されたニューラルラジアンス場QNeRFを紹介する。
拡散時間の経過とともにクエリをよりよく統合する、プログレッシブで反復的な手法により、プロセスを洗練します。
論文 参考訳(メタデータ) (2024-02-22T18:50:18Z) - CNS-Edit: 3D Shape Editing via Coupled Neural Shape Optimization [56.47175002368553]
本稿では、3次元形状編集を潜在空間で暗黙的に行うために,結合表現とニューラルボリューム最適化に基づく新しい手法を提案する。
まず,3次元形状編集を支援する結合型ニューラル形状表現を設計する。
第二に、結合したニューラルネットワークの形状最適化手順を定式化し、編集操作対象の2つの結合した成分を協調最適化する。
論文 参考訳(メタデータ) (2024-02-04T01:52:56Z) - SERF: Fine-Grained Interactive 3D Segmentation and Editing with Radiance Fields [92.14328581392633]
放射場を用いた対話型3Dセグメンテーションと編集アルゴリズムを新たに導入し,これをSERFと呼ぶ。
提案手法では,マルチビューアルゴリズムと事前学習した2Dモデルを統合することにより,ニューラルネットワーク表現を生成する。
この表現に基づいて,局所的な情報を保存し,変形に頑健な新しい表面レンダリング技術を導入する。
論文 参考訳(メタデータ) (2023-12-26T02:50:42Z) - Plasticine3D: 3D Non-Rigid Editing with Text Guidance by Multi-View Embedding Optimization [21.8454418337306]
本研究では,3次元非剛性編集が可能なテキスト誘導型3D編集パイプラインであるPlastine3Dを提案する。
本研究は,編集過程を幾何学的編集段階とテクスチャ的編集段階に分割し,構造と外観を別々に制御する。
細粒度制御のために,埋め込み空間の編集目的と原特徴を融合させるエンベディング・フュージョン (EF) を提案する。
論文 参考訳(メタデータ) (2023-12-15T09:01:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。