MARLIN: A Cloud Integrated Robotic Solution to Support Intralogistics in Retail
- URL: http://arxiv.org/abs/2407.02078v1
- Date: Tue, 2 Jul 2024 09:12:54 GMT
- Title: MARLIN: A Cloud Integrated Robotic Solution to Support Intralogistics in Retail
- Authors: Dennis Mronga, Andreas Bresser, Fabian Maas, Adrian Danzglock, Simon Stelter, Alina Hawkin, Hoang Giang Nguyen, Michael Beetz, Frank Kirchner,
- Abstract summary: We present the service robot MARLIN and its integration with the K4R platform, a cloud system for complex AI applications in retail.
MarLIN continuously exchanges data with the K4R platform, improving the robot's capabilities in perception, autonomous navigation, and task planning.
We exploit these capabilities in a retail intralogistics scenario, specifically by assisting store employees in stocking shelves.
- Score: 8.35597370637313
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we present the service robot MARLIN and its integration with the K4R platform, a cloud system for complex AI applications in retail. At its core, this platform contains so-called semantic digital twins, a semantically annotated representation of the retail store. MARLIN continuously exchanges data with the K4R platform, improving the robot's capabilities in perception, autonomous navigation, and task planning. We exploit these capabilities in a retail intralogistics scenario, specifically by assisting store employees in stocking shelves. We demonstrate that MARLIN is able to update the digital representation of the retail store by detecting and classifying obstacles, autonomously planning and executing replenishment missions, adapting to unforeseen changes in the environment, and interacting with store employees. Experiments are conducted in simulation, in a laboratory environment, and in a real store. We also describe and evaluate a novel algorithm for autonomous navigation of articulated tractor-trailer systems. The algorithm outperforms the manufacturer's proprietary navigation approach and improves MARLIN's navigation capabilities in confined spaces.
Related papers
- Learning Human Perception Dynamics for Informative Robot Communication [21.170542003568674]
CoNav-Maze is a simulated robotics environment where a robot navigates using local perception while a human operator provides guidance based on an inaccurate map.
To enable efficient human-robot cooperation, we propose Information Gain Monte Carlo Tree Search (IG-MCTS)
Central to IG-MCTS is a neural human perception dynamics model that estimates how humans distill information from robot communications.
arXiv Detail & Related papers (2025-02-03T22:08:04Z) - An Open-source Sim2Real Approach for Sensor-independent Robot Navigation in a Grid [0.0]
We bridge the gap between a trained agent in a simulated environment and its real-world implementation in navigating a robot in a similar setting.
Specifically, we focus on navigating a quadruped robot in a real-world grid-like environment inspired by the Gymnasium Frozen Lake.
arXiv Detail & Related papers (2024-11-05T20:18:29Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - RetailOpt: Opt-In, Easy-to-Deploy Trajectory Estimation from Smartphone Motion Data and Retail Facility Information [23.24640055170792]
We present RetailOpt, a novel opt-in, easy-to-deploy system for tracking customer movements offline in indoor retail environments.
The system uses readily accessible information from customer smartphones and retail apps, including motion data, store maps, and purchase records.
arXiv Detail & Related papers (2024-04-19T00:03:49Z) - Robot Fleet Learning via Policy Merging [58.5086287737653]
We propose FLEET-MERGE to efficiently merge policies in the fleet setting.
We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment.
We introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks.
arXiv Detail & Related papers (2023-10-02T17:23:51Z) - Autonomous Navigation of Micro Air Vehicles in Warehouses Using
Vision-based Line Following [1.0128808054306186]
We propose a vision-based solution for indoor Micro Air Vehicle (MAV) navigation, with a primary focus on its application within autonomous warehouses.
Our work centers on the utilization of a single camera as the primary sensor for tasks such as detection, localization, and path planning.
arXiv Detail & Related papers (2023-10-02T07:43:51Z) - SOCIALGYM 2.0: Simulator for Multi-Agent Social Robot Navigation in
Shared Human Spaces [13.116180950665962]
SocialGym 2 is a multi-agent navigation simulator for social robots.
It replicates real-world dynamics in complex environments, including doorways, hallways, intersections, and roundabouts.
SocialGym 2 offers an accessible python interface that integrates with a navigation stack through ROS messaging.
arXiv Detail & Related papers (2023-03-09T21:21:05Z) - GNM: A General Navigation Model to Drive Any Robot [67.40225397212717]
General goal-conditioned model for vision-based navigation can be trained on data obtained from many distinct but structurally similar robots.
We analyze the necessary design decisions for effective data sharing across robots.
We deploy the trained GNM on a range of new robots, including an under quadrotor.
arXiv Detail & Related papers (2022-10-07T07:26:41Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.