論文の概要: Exploring Federated Learning Dynamics for Black-and-White-Box DNN Traitor Tracing
- arxiv url: http://arxiv.org/abs/2407.02111v1
- Date: Tue, 2 Jul 2024 09:54:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:55:01.129525
- Title: Exploring Federated Learning Dynamics for Black-and-White-Box DNN Traitor Tracing
- Title(参考訳): ブラック・アンド・ホワイトボックスDNNトラクタトレースのためのフェデレーション学習ダイナミクスの探索
- Authors: Elena Rodriguez-Lois, Fernando Perez-Gonzalez,
- Abstract要約: 本稿では,フェデレートラーニングにおける白黒裏切り者追跡の適応について検討する。
以上の結果から,情報漏えいを疑うデータ所有者を識別するコラシオン耐性トレプレクターの追跡は,訓練の初期段階においてもFLフレームワークで可能であることが示唆された。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep learning applications become more prevalent, the need for extensive training examples raises concerns for sensitive, personal, or proprietary data. To overcome this, Federated Learning (FL) enables collaborative model training across distributed data-owners, but it introduces challenges in safeguarding model ownership and identifying the origin in case of a leak. Building upon prior work, this paper explores the adaptation of black-and-white traitor tracing watermarking to FL classifiers, addressing the threat of collusion attacks from different data-owners. This study reveals that leak-resistant white-box fingerprints can be directly implemented without a significant impact from FL dynamics, while the black-box fingerprints are drastically affected, losing their traitor tracing capabilities. To mitigate this effect, we propose increasing the number of black-box salient neurons through dropout regularization. Though there are still some open problems to be explored, such as analyzing non-i.i.d. datasets and over-parameterized models, results show that collusion-resistant traitor tracing, identifying all data-owners involved in a suspected leak, is feasible in an FL framework, even in early stages of training.
- Abstract(参考訳): ディープラーニングアプリケーションが普及するにつれて、広範なトレーニング例の必要性は、機密性、個人的、あるいはプロプライエタリなデータに対する懸念を提起する。
これを解決するために、フェデレートラーニング(FL)は、分散データオーナ間で協調的なモデルトレーニングを可能にするが、モデルオーナシップを保護し、リークが発生した場合の起点を特定するという課題を導入する。
先行研究に基づいて,異なるデータ所有者による共謀攻撃の脅威に対処するため,白黒裏切り者追跡透かしのFL分類器への適応について検討した。
この研究により、リーク耐性のホワイトボックス指紋はFLダイナミックスの影響を受けずに直接実装でき、ブラックボックス指紋は大幅に影響を受け、裏切り者の追跡能力を失うことが判明した。
この効果を緩和するために、ドロップアウト規則化によりブラックボックスサルエントニューロンの数を増やすことを提案する。
非I.d.データセットや過度パラメータ化モデルの分析など、未解決の問題はまだいくつかあるが、結果として、疑わしいリークに関わるすべてのデータ所有者を識別する、コラシオン耐性の裏切り者追跡が、訓練の初期段階であってもFLフレームワークで実現可能であることが示されている。
関連論文リスト
- Identify Backdoored Model in Federated Learning via Individual Unlearning [7.200910949076064]
裏口攻撃は、フェデレートラーニング(FL)の堅牢性に重大な脅威をもたらす
FLにおける悪意のあるモデルを特定するために,ローカルモデル上で個別の未学習を利用する手法であるMASAを提案する。
私たちの知る限りでは、FLの悪意あるモデルを特定するために機械学習を活用するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-11-01T21:19:47Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - FLTrojan: Privacy Leakage Attacks against Federated Language Models Through Selective Weight Tampering [2.2194815687410627]
悪意のあるクライアントが、サーバからの協力なしに、FL内の他のユーザのプライバシーに敏感なデータを漏洩させる方法を示す。
提案手法は, 最大71%の個人データ再構成を達成し, 会員推算率を29%向上させる。
論文 参考訳(メタデータ) (2023-10-24T19:50:01Z) - Understanding Deep Gradient Leakage via Inversion Influence Functions [53.1839233598743]
Deep Gradient Leakage (DGL)は、勾配ベクトルからプライベートトレーニングイメージを復元する非常に効果的な攻撃である。
得られた画像とプライベート勾配との間の閉形式接続を確立する新しいインバージョンインフルエンス関数(I$2$F)を提案する。
I$2$Fは、一般的に異なるモデルアーキテクチャ、データセット、アタック実装、摂動に基づく防御に基づいてDGLを効果的に近似したことを実証的に実証した。
論文 参考訳(メタデータ) (2023-09-22T17:26:24Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Gradient Inversion with Generative Image Prior [37.03737843861339]
Federated Learning(FL)は、ローカルデータがクライアントデバイスから離れてプライバシを保存する、分散学習フレームワークである。
データ配信で事前訓練された生成モデルを利用することで、データのプライバシが容易に破られることを示す。
本研究では,FLにおける反復的相互作用から,前者の生成モデルが学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-28T09:04:32Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。