Breaking Language Barriers: Cross-Lingual Continual Pre-Training at Scale
- URL: http://arxiv.org/abs/2407.02118v2
- Date: Wed, 02 Oct 2024 06:32:10 GMT
- Title: Breaking Language Barriers: Cross-Lingual Continual Pre-Training at Scale
- Authors: Wenzhen Zheng, Wenbo Pan, Xu Xu, Libo Qin, Li Yue, Ming Zhou,
- Abstract summary: We explore an alternative approach to constructing an Large Language Model by continually pretraining (CPT) from existing pretrained LLMs.
We find that CPT converges faster and saves significant resources in a scalable manner.
The effectiveness of transfer at scale is influenced by training duration and linguistic properties, while robust to data replaying.
- Score: 18.015805664219673
- License:
- Abstract: In recent years, Large Language Models (LLMs) have made significant strides towards Artificial General Intelligence. However, training these models from scratch requires substantial computational resources and vast amounts of text data. In this paper, we explore an alternative approach to constructing an LLM for a new language by continually pretraining (CPT) from existing pretrained LLMs, instead of using randomly initialized parameters. Based on parallel experiments on 40 model sizes ranging from 40M to 5B parameters, we find that 1) CPT converges faster and saves significant resources in a scalable manner; 2) CPT adheres to an extended scaling law derived from Hoffmann et al. (2022) with a joint data-parameter scaling term; 3) The compute-optimal data-parameter allocation for CPT markedly differs based on our estimated scaling factors; 4) The effectiveness of transfer at scale is influenced by training duration and linguistic properties, while robust to data replaying, a method that effectively mitigates catastrophic forgetting in CPT. We hope our findings provide deeper insights into the transferability of LLMs at scale for the research community.
Related papers
- Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
In-context learning of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples.
We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer.
We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context.
arXiv Detail & Related papers (2024-08-22T08:02:10Z) - ConVerSum: A Contrastive Learning based Approach for Data-Scarce Solution of Cross-Lingual Summarization Beyond Direct Equivalents [3.356903304289716]
Cross-Lingual summarization is a sophisticated branch in Natural Language Processing.
There is no feasible solution for CLS when there is no available high-quality CLS data.
We propose a novel data-efficient approach, ConVerSum, for CLS leveraging the power of contrastive learning.
arXiv Detail & Related papers (2024-08-17T19:03:53Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Scaling Laws for Sparsely-Connected Foundation Models [70.41266138010657]
We explore the impact of parameter sparsity on the scaling behavior of Transformers trained on massive datasets.
We identify the first scaling law describing the relationship between weight sparsity, number of non-zero parameters, and amount of training data.
arXiv Detail & Related papers (2023-09-15T16:29:27Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z) - Evaluating natural language processing models with generalization
metrics that do not need access to any training or testing data [66.11139091362078]
We provide the first model selection results on large pretrained Transformers from Huggingface using generalization metrics.
Despite their niche status, we find that metrics derived from the heavy-tail (HT) perspective are particularly useful in NLP tasks.
arXiv Detail & Related papers (2022-02-06T20:07:35Z) - CPM-2: Large-scale Cost-effective Pre-trained Language Models [71.59893315671997]
We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference.
We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch.
We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources.
arXiv Detail & Related papers (2021-06-20T15:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.