論文の概要: Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
- arxiv url: http://arxiv.org/abs/2407.02143v1
- Date: Tue, 2 Jul 2024 10:37:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:45:15.822938
- Title: Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
- Title(参考訳): グラフ異常検出のためのデノベーション拡散によるデファクトデータ拡張
- Authors: Chunjing Xiao, Shikang Pang, Xovee Xu, Xuan Li, Goce Trajcevski, Fan Zhou,
- Abstract要約: グラフ異常検出のための教師なし対実データ拡張法CAGADを提案する。
グラフ固有の拡散モデルを設計し、その近傍の一部(おそらく通常のもの)を異常なものに翻訳する。
翻訳された異常な隣人を集約することで、偽造表現はより識別しやすくなり、さらに検出性能を主張する。
- 参考スコア(独自算出の注目度): 32.165578819142695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A critical aspect of Graph Neural Networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone to be averaged by normal neighbors, making the learned anomaly representations less distinguishable. To tackle this issue, we propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection -- which introduces a graph pointer neural network as the heterophilic node detector to identify potential anomalies whose neighborhoods are normal-node-dominant. For each identified potential anomaly, we design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones. At last, we involve these translated neighbors in GNN neighborhood aggregation to produce counterfactual representations of anomalies. Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance. The experimental results on four datasets demonstrate that CAGAD significantly outperforms strong baselines, with an average improvement of 2.35% on F1, 2.53% on AUC-ROC, and 2.79% on AUC-PR.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の重要な側面は、ノード近傍情報を集約することでノード表現を強化することである。
しかしながら、異常を検出する際、異常ノードの表現は通常の隣人によって平均化されがちであり、学習された異常表現を識別しにくくする。
この問題に対処するため、我々は、グラフ異常検出のための教師なしの対実データ拡張手法であるCAGADを提案し、これは、グラフポインターニューラルネットワークを異種ノード検出器として導入し、近隣が正常ノード優位な潜在的な異常を検出する。
同定された潜在的な異常に対して、我々はグラフ固有の拡散モデルを設計し、隣り合う部分(おそらくは正規である)の一部を異常なものに翻訳する。
最終的に、これらの翻訳された近隣住民をGNN近傍の集約に巻き込み、異常の非現実的表現を生成する。
翻訳された異常な隣人を集約することで、偽造表現はより識別しやすくなり、さらに検出性能を主張する。
4つのデータセットの実験結果から、CAGADはF1では2.35%、AUC-ROCでは2.53%、AUC-PRでは2.79%、強いベースラインを著しく上回ることが示された。
関連論文リスト
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
教師なしグラフ異常検出は、ラベルを使わずにグラフの多数から逸脱する稀なパターンを特定することを目的としている。
近年,グラフニューラルネットワーク(GNN)を用いて効率的なノード表現を学習している。
教師なしグラフ異常検出(G3AD)のためのグラフニューラルネットワークのガードフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-25T07:09:05Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
グラフ異常検出(GAD)は二項分類の問題である。
ガロン神経ネットワーク(GNN)は、同胞性隣人からの正常の分類に有用である。
ヘテロ親水性隣人の影響を緩和し、不変にするための枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-25T13:07:34Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Reinforcement Neighborhood Selection for Unsupervised Graph Anomaly
Detection [22.322241872706314]
教師なしグラフ異常検出は様々な応用に不可欠である。
近年、グラフニューラルネットワーク(GNN)を用いて、異常検出のための高品質なノード表現を学習している。
教師なしグラフアノマリー検出(RAND)のための強化近傍選択を取り入れた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T10:39:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction [36.56631787651942]
グラフオートエンコーダ(GAE)はグラフデータをノード表現にエンコードし、これらの表現に基づいてグラフの再構成品質を評価することで異常を識別する。
グラフ異常検出のための近傍再構成を組み込んだ新しいGAEであるGAD-NRを提案する。
6つの実世界のデータセットで実施された大規模な実験は、GAD-NRの有効性を検証し、最先端の競合相手よりも顕著な改善(AUCでは最大30%)を示す。
論文 参考訳(メタデータ) (2023-06-02T23:23:34Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
クロスドメイングラフ異常検出(CD-GAD)は、非競合対象グラフにおける異常ノードを検出する問題を記述する。
本稿では,GADのための新しいドメイン適応手法,すなわちAnomaly-aware ContrastivealignedmenT (ACT)を導入する。
ACTは10種類の最先端GAD法で検出性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-12-02T11:21:48Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
サブ構造認識(ARISE)による属性付きネットワーク上の新しいグラフ異常検出フレームワークを提案する。
ARISEは、異常を識別するグラフのサブ構造に焦点を当てている。
実験により、ARISEは最先端の属性付きネットワーク異常検出(ANAD)アルゴリズムと比較して、検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-28T12:17:40Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。