Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
- URL: http://arxiv.org/abs/2407.02143v1
- Date: Tue, 2 Jul 2024 10:37:54 GMT
- Title: Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
- Authors: Chunjing Xiao, Shikang Pang, Xovee Xu, Xuan Li, Goce Trajcevski, Fan Zhou,
- Abstract summary: We propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection.
We design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones.
Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance.
- Score: 32.165578819142695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A critical aspect of Graph Neural Networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone to be averaged by normal neighbors, making the learned anomaly representations less distinguishable. To tackle this issue, we propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection -- which introduces a graph pointer neural network as the heterophilic node detector to identify potential anomalies whose neighborhoods are normal-node-dominant. For each identified potential anomaly, we design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones. At last, we involve these translated neighbors in GNN neighborhood aggregation to produce counterfactual representations of anomalies. Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance. The experimental results on four datasets demonstrate that CAGAD significantly outperforms strong baselines, with an average improvement of 2.35% on F1, 2.53% on AUC-ROC, and 2.79% on AUC-PR.
Related papers
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels.
Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations.
We propose a framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD)
arXiv Detail & Related papers (2024-04-25T07:09:05Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
Graph anomaly detection (GAD) is a challenging binary classification problem.
Gallon neural networks (GNNs) benefit the classification of normals from aggregating homophilous neighbors.
We propose a framework to mitigate the effect of heterophilous neighbors and make them invariant.
arXiv Detail & Related papers (2024-01-25T13:07:34Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Reinforcement Neighborhood Selection for Unsupervised Graph Anomaly
Detection [22.322241872706314]
Unsupervised graph anomaly detection is crucial for various practical applications.
Recent advancements have utilized Graph Neural Networks (GNNs) to learn high-quality node representations for anomaly detection.
We propose a novel method that incorporates Reinforcement neighborhood selection for unsupervised graph ANomaly Detection (RAND)
arXiv Detail & Related papers (2023-12-09T10:39:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction [36.56631787651942]
Graph Auto-Encoders (GAEs) encode graph data into node representations and identify anomalies by assessing the reconstruction quality of the graphs based on these representations.
We propose GAD-NR, a new variant of GAE that incorporates neighborhood reconstruction for graph anomaly detection.
Extensive experimentation conducted on six real-world datasets validates the effectiveness of GAD-NR, showcasing significant improvements (by up to 30% in AUC) over state-of-the-art competitors.
arXiv Detail & Related papers (2023-06-02T23:23:34Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph.
We introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT) for GAD.
ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods.
arXiv Detail & Related papers (2022-12-02T11:21:48Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.