Equidistribution-based training of Free Knot Splines and ReLU Neural Networks
- URL: http://arxiv.org/abs/2407.02153v1
- Date: Tue, 2 Jul 2024 10:51:36 GMT
- Title: Equidistribution-based training of Free Knot Splines and ReLU Neural Networks
- Authors: Simone Appella, Simon Arridge, Chris Budd, Teo Deveney, Lisa Maria Kreusser,
- Abstract summary: We consider the problem of one-dimensional function approximation using shallow neural networks (NN) with a rectified linear unit (ReLU) activation function.
We show that their ill-conditioning degrades rapidly as the width of the network increases.
We leverage the theory of optimal piecewise linear interpolants to improve the training procedure for a ReLU NN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the problem of one-dimensional function approximation using shallow neural networks (NN) with a rectified linear unit (ReLU) activation function and compare their training with traditional methods such as univariate Free Knot Splines (FKS). ReLU NNs and FKS span the same function space, and thus have the same theoretical expressivity. In the case of ReLU NNs, we show that their ill-conditioning degrades rapidly as the width of the network increases. This often leads to significantly poorer approximation in contrast to the FKS representation, which remains well-conditioned as the number of knots increases. We leverage the theory of optimal piecewise linear interpolants to improve the training procedure for a ReLU NN. Using the equidistribution principle, we propose a two-level procedure for training the FKS by first solving the nonlinear problem of finding the optimal knot locations of the interpolating FKS. Determining the optimal knots then acts as a good starting point for training the weights of the FKS. The training of the FKS gives insights into how we can train a ReLU NN effectively to give an equally accurate approximation. More precisely, we combine the training of the ReLU NN with an equidistribution based loss to find the breakpoints of the ReLU functions, combined with preconditioning the ReLU NN approximation (to take an FKS form) to find the scalings of the ReLU functions, leads to a well-conditioned and reliable method of finding an accurate ReLU NN approximation to a target function. We test this method on a series or regular, singular, and rapidly varying target functions and obtain good results realising the expressivity of the network in this case.
Related papers
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
We study the least-square regression problem with a two-layer fully-connected neural network, with ReLU activation function, trained by gradient flow.
Our first result is a generalization result, that requires no assumptions on the underlying regression function or the noise other than that they are bounded.
arXiv Detail & Related papers (2024-10-08T16:54:23Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
We show that for a particular choice of mask weights that do not depend on the learning targets, this kernel is equivalent to the NTK of the gated ReLU network on the training data.
A consequence of this lack of dependence on the targets is that the NTK cannot perform better than the optimal MKL kernel on the training set.
arXiv Detail & Related papers (2023-09-26T17:42:52Z) - Optimal Sets and Solution Paths of ReLU Networks [56.40911684005949]
We develop an analytical framework to characterize the set of optimal ReLU networks.
We establish conditions for the neuralization of ReLU networks to be continuous, and develop sensitivity results for ReLU networks.
arXiv Detail & Related papers (2023-05-31T18:48:16Z) - How do noise tails impact on deep ReLU networks? [2.5889847253961418]
We show how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions.
We also contribute some new results on the approximation theory of deep ReLU neural networks.
arXiv Detail & Related papers (2022-03-20T00:27:32Z) - Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model
Classes and Cone Decompositions [41.337814204665364]
We develop algorithms for convex optimization of two-layer neural networks with ReLU activation functions.
We show that convex gated ReLU models obtain data-dependent approximation bounds for the ReLU training problem.
arXiv Detail & Related papers (2022-02-02T23:50:53Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning
Convergence Analysis [27.022551495550676]
This paper presents a new class of convergence analysis for FL, Learning Neural Kernel (FL-NTK), which corresponds to overterized Reparamterized ReLU neural networks trained by gradient descent in FL.
Theoretically, FL-NTK converges to a global-optimal solution at atrivial rate with properly tuned linear learning parameters.
arXiv Detail & Related papers (2021-05-11T13:05:53Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.