論文の概要: RETINA: a hardware-in-the-loop optical facility with reduced optical aberrations
- arxiv url: http://arxiv.org/abs/2407.02172v1
- Date: Tue, 2 Jul 2024 11:26:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:45:15.790471
- Title: RETINA: a hardware-in-the-loop optical facility with reduced optical aberrations
- Title(参考訳): RETINA:光収差を低減したループ式ハードウェア・イン・ザ・ループ光学設備
- Authors: Paolo Panicucci, Fabio Ornati, Francesco Topputo,
- Abstract要約: 視覚に基づくナビゲーションアルゴリズムは、低コストで汎用的なセンサーで軌道上の宇宙船の状態を決定する効果的な解決策として自らを確立している。
実験室で軌道環境をエミュレートするために、専用のシミュレーションフレームワークを開発する必要がある。
本稿では,RETINAと呼ばれる低収差光学設備の設計について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing interest in spacecraft autonomy and the complex tasks to be accomplished by the spacecraft raise the need for a trustworthy approach to perform Verification & Validation of Guidance, Navigation, and Control algorithms. In the context of autonomous operations, vision-based navigation algorithms have established themselves as effective solutions to determine the spacecraft state in orbit with low-cost and versatile sensors. Nevertheless, detailed testing must be performed on ground to understand the algorithm's robustness and performance on flight hardware. Given the impossibility of testing directly on orbit these algorithms, a dedicated simulation framework must be developed to emulate the orbital environment in a laboratory setup. This paper presents the design of a low-aberration optical facility called RETINA to perform this task. RETINA is designed to accommodate cameras with different characteristics (e.g., sensor size and focal length) while ensuring the correct stimulation of the camera detector. A preliminary design is performed to identify the range of possible components to be used in the facility according to the facility requirements. Then, a detailed optical design is performed in Zemax OpticStudio to optimize the number and characteristics of the lenses composing the facility's optical systems. The final design is compared against the preliminary design to show the superiority of the optical performance achieved with this approach. This work presents also a calibration procedure to estimate the misalignment and the centering errors in the facility. These estimated parameters are used in a dedicated compensation algorithm, enabling the stimulation of the camera at tens of arcseconds of precision. Finally, two different applications are presented to show the versatility of RETINA in accommodating different cameras and in simulating different mission scenarios.
- Abstract(参考訳): 宇宙船の自律性への関心が高まり、宇宙船によって達成される複雑なタスクは、誘導、航法、制御の検証と検証を行うための信頼できるアプローチの必要性を高める。
自律的な操作の文脈において、視覚に基づくナビゲーションアルゴリズムは、低コストで汎用的なセンサーで軌道上の宇宙船の状態を決定する効果的な解決策として自らを確立してきた。
それでも、飛行ハードウェア上でのアルゴリズムの堅牢性と性能を理解するために、地上で詳細なテストを行う必要がある。
これらのアルゴリズムを直接軌道上でテストすることは不可能であるので、実験室で軌道環境をエミュレートするために専用のシミュレーションフレームワークを開発する必要がある。
本稿では,RETINAと呼ばれる低収差光学設備の設計について述べる。
RETINAは、カメラ検出器の正しい刺激を確保しつつ、異なる特性(例えば、センサーサイズ、焦点距離)のカメラを収容するように設計されている。
施設の要件に応じて施設内で使用可能なコンポーネントの範囲を特定するための予備設計を行う。
そして、Zemax OpticStudioで詳細な光学設計を行い、施設の光学系を構成するレンズの数と特性を最適化する。
最終設計は、この手法により達成された光学性能の優位性を示すために、予備設計と比較される。
本研究は,施設の誤調整と中心誤差を推定するための校正手順も提示する。
これらの推定パラメータは専用の補償アルゴリズムで利用され、カメラを数十秒の精度で刺激することができる。
最後に、2つの異なるアプリケーションを示し、異なるカメラを収容し、異なるミッションシナリオをシミュレートするRETINAの汎用性を示す。
関連論文リスト
- Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
ロボット工学において、モーションキャプチャシステムはローカライズアルゴリズムの精度を測定するために広く利用されている。
これらの機能は、カメラとグローバルポーズセンサーの間で正確で信頼性の高い時空間キャリブレーションパラメータを必要とする。
本研究では,これらのキャリブレーションパラメータを推定する新しい2つの手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T20:56:14Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - SST-Calib: Simultaneous Spatial-Temporal Parameter Calibration between
LIDAR and Camera [26.59231069298659]
カメラLIDARスイートの校正における幾何学的パラメータと時間的パラメータを共同で推定するセグメンテーションベースのフレームワークを提案する。
提案アルゴリズムは,KITTIデータセット上でテストし,幾何学的パラメータと時間的パラメータの正確なリアルタイムキャリブレーションを示す。
論文 参考訳(メタデータ) (2022-07-08T06:21:52Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
本稿では,イベントカメラとライダーの直接校正法について述べる。
フレームベースのカメラインターミディエートおよび/または高精度の手測定への依存を除去する。
論文 参考訳(メタデータ) (2022-07-03T11:05:45Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - PlenoptiCam v1.0: A light-field imaging framework [8.467466998915018]
光界カメラは狭帯域深度センシングアプリケーションにおいてリッチな3次元情報検索において重要な役割を担っている。
レンズカメラによる露光から光フィールドを構成する際の重要な障害は、4次元画像データを計算的に調整し、調整し、再配置することである。
特定の望遠カメラ専用のパイプラインを調整することで、全体的な画質を向上させるためのいくつかの試みが提案されている。
論文 参考訳(メタデータ) (2020-10-14T09:23:18Z) - Robust On-Manifold Optimization for Uncooperative Space Relative
Navigation with a Single Camera [4.129225533930966]
単分子装置のみを用いて、チェッカー宇宙船に対して対象物体の6次元ポーズを推定するために、革新的なモデルに基づくアプローチが実証された。
複雑な宇宙船エンビザットとランデブー軌道のリアルな合成と実験室のデータセットで検証されている。
論文 参考訳(メタデータ) (2020-05-14T16:23:04Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。