Indian Stock Market Prediction using Augmented Financial Intelligence ML
- URL: http://arxiv.org/abs/2407.02236v1
- Date: Tue, 2 Jul 2024 12:58:50 GMT
- Title: Indian Stock Market Prediction using Augmented Financial Intelligence ML
- Authors: Anishka Chauhan, Pratham Mayur, Yeshwanth Sai Gokarakonda, Pooriya Jamie, Naman Mehrotra,
- Abstract summary: This paper presents price prediction models using Machine Learning algorithms augmented with Superforecasters predictions.
The models are evaluated using the Mean Absolute Error to determine their predictive accuracy.
The main goal is to identify Superforecasters and track their predictions to anticipate unpredictable shifts or changes in stock prices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents price prediction models using Machine Learning algorithms augmented with Superforecasters predictions, aimed at enhancing investment decisions. Five Machine Learning models are built, including Bidirectional LSTM, ARIMA, a combination of CNN and LSTM, GRU, and a model built using LSTM and GRU algorithms. The models are evaluated using the Mean Absolute Error to determine their predictive accuracy. Additionally, the paper suggests incorporating human intelligence by identifying Superforecasters and tracking their predictions to anticipate unpredictable shifts or changes in stock prices . The predictions made by these users can further enhance the accuracy of stock price predictions when combined with Machine Learning and Natural Language Processing techniques. Predicting the price of any commodity can be a significant task but predicting the price of a stock in the stock market deals with much more uncertainty. Recognising the limited knowledge and exposure to stocks among certain investors, this paper proposes price prediction models using Machine Learning algorithms. In this work, five Machine learning models are built using Bidirectional LSTM, ARIMA, a combination of CNN and LSTM, GRU and the last one is built using LSTM and GRU algorithms. Later these models are assessed using MAE scores to find which model is predicting with the highest accuracy. In addition to this, this paper also suggests the use of human intelligence to closely predict the shift in price patterns in the stock market The main goal is to identify Superforecasters and track their predictions to anticipate unpredictable shifts or changes in stock prices. By leveraging the combined power of Machine Learning and the Human Intelligence, predictive accuracy can be significantly increased.
Related papers
- Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
The aim is to improve the prediction accuracy of the next day's closing price of the NIFTY 50 index, a prominent Indian stock market index.
A combination of eight influential factors is carefully chosen from fundamental stock data, technical indicators, crude oil price, and macroeconomic data to train the models.
arXiv Detail & Related papers (2024-06-02T06:39:01Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
This paper will review many deep learning algorithms for stock price forecasting. We use a record of s&p 500 index data for training and testing.
It will discuss various models, including the Auto regression integration moving average model, the Recurrent neural network model, the long short-term model, the convolutional neural network model, and the full convolutional neural network model.
arXiv Detail & Related papers (2024-02-08T16:45:01Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Short-Term Stock Price Forecasting using exogenous variables and Machine
Learning Algorithms [3.2732602885346576]
This research paper compares four machine learning models and their accuracy in forecasting three well-known stocks traded in the NYSE from March 2020 to May 2022.
We deploy, develop, and tune XGBoost, Random Forest, Multi-layer Perceptron, and Support Vector Regression models.
Using a training data set of 240 trading days, we find that XGBoost gives the highest accuracy despite running longer.
arXiv Detail & Related papers (2023-05-17T07:04:32Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales [65.01417261415833]
We present an approach to predict the pre-training loss based on our observations that Maximal Update Parametrization (muP) enables accurate fitting of scaling laws.
With around 14% of the one-time pre-training cost, we can accurately forecast the loss for models up to 52B.
Our goal with nanoLM is to empower researchers with limited resources to reach meaningful conclusions on large models.
arXiv Detail & Related papers (2023-04-14T00:45:01Z) - Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs [0.304585143845864]
We train two LSTMs with a known length, say $T$ time steps, of previous data and predict only one time step ahead.
While one LSTM is employed to find the best number of epochs, the second LSTM is trained only for the best number of epochs to make predictions.
We treat the current prediction as in the training set for the next prediction and train the same LSTM.
arXiv Detail & Related papers (2022-05-10T05:18:45Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models.
Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation.
arXiv Detail & Related papers (2022-05-01T05:12:22Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.