Short-Term Stock Price Forecasting using exogenous variables and Machine
Learning Algorithms
- URL: http://arxiv.org/abs/2309.00618v1
- Date: Wed, 17 May 2023 07:04:32 GMT
- Title: Short-Term Stock Price Forecasting using exogenous variables and Machine
Learning Algorithms
- Authors: Albert Wong, Steven Whang, Emilio Sagre, Niha Sachin, Gustavo Dutra,
Yew-Wei Lim, Gaetan Hains, Youry Khmelevsky, Frank Zhang
- Abstract summary: This research paper compares four machine learning models and their accuracy in forecasting three well-known stocks traded in the NYSE from March 2020 to May 2022.
We deploy, develop, and tune XGBoost, Random Forest, Multi-layer Perceptron, and Support Vector Regression models.
Using a training data set of 240 trading days, we find that XGBoost gives the highest accuracy despite running longer.
- Score: 3.2732602885346576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creating accurate predictions in the stock market has always been a
significant challenge in finance. With the rise of machine learning as the next
level in the forecasting area, this research paper compares four machine
learning models and their accuracy in forecasting three well-known stocks
traded in the NYSE in the short term from March 2020 to May 2022. We deploy,
develop, and tune XGBoost, Random Forest, Multi-layer Perceptron, and Support
Vector Regression models. We report the models that produce the highest
accuracies from our evaluation metrics: RMSE, MAPE, MTT, and MPE. Using a
training data set of 240 trading days, we find that XGBoost gives the highest
accuracy despite running longer (up to 10 seconds). Results from this study may
improve by further tuning the individual parameters or introducing more
exogenous variables.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Indian Stock Market Prediction using Augmented Financial Intelligence ML [0.0]
This paper presents price prediction models using Machine Learning algorithms augmented with Superforecasters predictions.
The models are evaluated using the Mean Absolute Error to determine their predictive accuracy.
The main goal is to identify Superforecasters and track their predictions to anticipate unpredictable shifts or changes in stock prices.
arXiv Detail & Related papers (2024-07-02T12:58:50Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs [0.304585143845864]
We train two LSTMs with a known length, say $T$ time steps, of previous data and predict only one time step ahead.
While one LSTM is employed to find the best number of epochs, the second LSTM is trained only for the best number of epochs to make predictions.
We treat the current prediction as in the training set for the next prediction and train the same LSTM.
arXiv Detail & Related papers (2022-05-10T05:18:45Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
We present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction.
We build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices.
arXiv Detail & Related papers (2020-11-07T16:07:10Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z) - Deep learning for Stock Market Prediction [0.0]
This paper concentrates on the future prediction of stock market groups.
Four groups named diversified financials, petroleum, non-metallic minerals and basic metals from Tehran stock exchange are chosen.
The values predictions are created for 1, 2, 5, 10, 15, 20 and 30 days in advance.
arXiv Detail & Related papers (2020-03-31T22:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.