Towards Human Understanding of Paraphrase Types in Large Language Models
- URL: http://arxiv.org/abs/2407.02302v2
- Date: Tue, 18 Feb 2025 16:39:48 GMT
- Title: Towards Human Understanding of Paraphrase Types in Large Language Models
- Authors: Dominik Meier, Jan Philip Wahle, Terry Ruas, Bela Gipp,
- Abstract summary: Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes.
We introduce APTY (Atomic Paraphrase TYpes), a dataset of 800 sentence-level and word-level annotations by 15 annotators.
Our results reveal that ChatGPT and a DPO-trained LLama 7B model can generate simple APTs, but struggle with complex structures.
- Score: 7.662751948664846
- License:
- Abstract: Paraphrases represent a human's intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic expression (e.g., a shift in syntax or vocabulary used). In this study, we assess the human preferences towards ChatGPT in generating English paraphrases with ten APTs and five prompting techniques. We introduce APTY (Atomic Paraphrase TYpes), a dataset of 800 sentence-level and word-level annotations by 15 annotators. The dataset also provides a human preference ranking of paraphrases with different types that can be used to fine-tune models with RLHF and DPO methods. Our results reveal that ChatGPT and a DPO-trained LLama 7B model can generate simple APTs, such as additions and deletions, but struggle with complex structures (e.g., subordination changes). This study contributes to understanding which aspects of paraphrasing language models have already succeeded at understanding and what remains elusive. In addition, we show how our curated datasets can be used to develop language models with specific linguistic capabilities.
Related papers
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - Exploring syntactic information in sentence embeddings through multilingual subject-verb agreement [1.4335183427838039]
We take the approach of developing curated synthetic data on a large scale, with specific properties.
We use a new multiple-choice task and datasets, Blackbird Language Matrices, to focus on a specific grammatical structural phenomenon.
We show that despite having been trained on multilingual texts in a consistent manner, multilingual pretrained language models have language-specific differences.
arXiv Detail & Related papers (2024-09-10T14:58:55Z) - Paraphrase Types Elicit Prompt Engineering Capabilities [9.311064293678154]
This study systematically and empirically evaluates which linguistic features influence models through paraphrase types.
We measure behavioral changes for five models across 120 tasks and six families of paraphrases.
Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types.
arXiv Detail & Related papers (2024-06-28T13:06:31Z) - We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text [8.956635443376527]
We present a suite of experiments that allow us to understand the underlying challenges of language model adaptation to nonstandard text.
We do so by designing interventions that approximate several types of linguistic variation and their interactions with existing biases of language models.
Applying our interventions during language model adaptation with varying size and nature of training data, we gain important insights into when knowledge transfer can be successful.
arXiv Detail & Related papers (2024-04-10T18:56:53Z) - A Taxonomy of Ambiguity Types for NLP [53.10379645698917]
We propose a taxonomy of ambiguity types as seen in English to facilitate NLP analysis.
Our taxonomy can help make meaningful splits in language ambiguity data, allowing for more fine-grained assessments of both datasets and model performance.
arXiv Detail & Related papers (2024-03-21T01:47:22Z) - Few-Shot Detection of Machine-Generated Text using Style Representations [4.326503887981912]
Language models that convincingly mimic human writing pose a significant risk of abuse.
We propose to leverage representations of writing style estimated from human-authored text.
We find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors.
arXiv Detail & Related papers (2024-01-12T17:26:51Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
We present a structured prompting approach for linguistic structured prediction tasks.
We evaluate this approach on part-of-speech tagging, named entity recognition, and sentence chunking.
We find that while PLMs contain significant prior knowledge of task labels due to task leakage into the pretraining corpus, structured prompting can also retrieve linguistic structure with arbitrary labels.
arXiv Detail & Related papers (2022-11-15T01:13:39Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Polling Latent Opinions: A Method for Computational Sociolinguistics
Using Transformer Language Models [4.874780144224057]
We use the capacity for memorization and extrapolation of Transformer Language Models to learn the linguistic behaviors of a subgroup within larger corpora of Yelp reviews.
We show that even in cases where a specific keyphrase is limited or not present at all in the training corpora, the GPT is able to accurately generate large volumes of text that have the correct sentiment.
arXiv Detail & Related papers (2022-04-15T14:33:58Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics.
Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding.
We show that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena.
arXiv Detail & Related papers (2022-02-21T18:32:24Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.