Semantically Guided Representation Learning For Action Anticipation
- URL: http://arxiv.org/abs/2407.02309v1
- Date: Tue, 2 Jul 2024 14:44:01 GMT
- Title: Semantically Guided Representation Learning For Action Anticipation
- Authors: Anxhelo Diko, Danilo Avola, Bardh Prenkaj, Federico Fontana, Luigi Cinque,
- Abstract summary: We propose the novel Semantically Guided Representation Learning (S-GEAR) framework.
S-GEAR learns visual action prototypes and leverages language models to structure their relationship, inducing semanticity.
We observe that S-GEAR effectively transfers the geometric associations between actions from language to visual prototypes.
- Score: 9.836788915947924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Action anticipation is the task of forecasting future activity from a partially observed sequence of events. However, this task is exposed to intrinsic future uncertainty and the difficulty of reasoning upon interconnected actions. Unlike previous works that focus on extrapolating better visual and temporal information, we concentrate on learning action representations that are aware of their semantic interconnectivity based on prototypical action patterns and contextual co-occurrences. To this end, we propose the novel Semantically Guided Representation Learning (S-GEAR) framework. S-GEAR learns visual action prototypes and leverages language models to structure their relationship, inducing semanticity. To gather insights on S-GEAR's effectiveness, we test it on four action anticipation benchmarks, obtaining improved results compared to previous works: +3.5, +2.7, and +3.5 absolute points on Top-1 Accuracy on Epic-Kitchen 55, EGTEA Gaze+ and 50 Salads, respectively, and +0.8 on Top-5 Recall on Epic-Kitchens 100. We further observe that S-GEAR effectively transfers the geometric associations between actions from language to visual prototypes. Finally, S-GEAR opens new research frontiers in anticipation tasks by demonstrating the intricate impact of action semantic interconnectivity.
Related papers
- From Recognition to Prediction: Leveraging Sequence Reasoning for Action Anticipation [30.161471749050833]
We propose a novel end-to-end video modeling architecture that utilizes attention mechanisms, named Anticipation via Recognition and Reasoning (ARR)
ARR decomposes the action anticipation task into action recognition and reasoning tasks, and effectively learns the statistical relationship between actions by next action prediction (NAP)
In addition, to address the challenge of relationship modeling that requires extensive training data, we propose an innovative approach for the unsupervised pre-training of the decoder.
arXiv Detail & Related papers (2024-08-05T18:38:29Z) - Android in the Zoo: Chain-of-Action-Thought for GUI Agents [38.07337874116759]
This work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action.
We demonstrate that, in a zero-shot setting upon three off-the-shelf LMMs, CoAT significantly improves the action prediction compared to previous proposed context modeling.
To further facilitate the research in this line, we construct a dataset Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action
arXiv Detail & Related papers (2024-03-05T07:09:35Z) - PALM: Predicting Actions through Language Models [74.10147822693791]
We introduce PALM, an approach that tackles the task of long-term action anticipation.
Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details.
Our experimental results demonstrate that PALM surpasses the state-of-the-art methods in the task of long-term action anticipation.
arXiv Detail & Related papers (2023-11-29T02:17:27Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
We propose a novel learning strategy that can improve reasoning about the effects of actions.
We demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
arXiv Detail & Related papers (2022-12-07T05:41:58Z) - Rethinking Learning Approaches for Long-Term Action Anticipation [32.67768331823358]
Action anticipation involves predicting future actions having observed the initial portion of a video.
We introduce ANTICIPATR which performs long-term action anticipation.
We propose a two-stage learning approach to train a novel transformer-based model.
arXiv Detail & Related papers (2022-10-20T20:07:30Z) - A-ACT: Action Anticipation through Cycle Transformations [89.83027919085289]
We take a step back to analyze how the human capability to anticipate the future can be transferred to machine learning algorithms.
A recent study on human psychology explains that, in anticipating an occurrence, the human brain counts on both systems.
In this work, we study the impact of each system for the task of action anticipation and introduce a paradigm to integrate them in a learning framework.
arXiv Detail & Related papers (2022-04-02T21:50:45Z) - Forecasting Action through Contact Representations from First Person
Video [7.10140895422075]
We introduce representations and models centered on contact, which we then use in action prediction and anticipation.
Using these annotations we train a module producing novel low-level representations of anticipated near future action.
On top of the Anticipation Module we apply Ego-OMG, a framework for action anticipation and prediction.
arXiv Detail & Related papers (2021-02-01T05:52:57Z) - Learning to Anticipate Egocentric Actions by Imagination [60.21323541219304]
We study the egocentric action anticipation task, which predicts future action seconds before it is performed for egocentric videos.
Our method significantly outperforms previous methods on both the seen test set and the unseen test set of the EPIC Kitchens Action Anticipation Challenge.
arXiv Detail & Related papers (2021-01-13T08:04:10Z) - Long-Term Anticipation of Activities with Cycle Consistency [90.79357258104417]
We propose a framework for anticipating future activities directly from the features of the observed frames and train it in an end-to-end fashion.
Our framework achieves state-the-art results on two datasets: the Breakfast dataset and 50Salads.
arXiv Detail & Related papers (2020-09-02T15:41:32Z) - Noisy Agents: Self-supervised Exploration by Predicting Auditory Events [127.82594819117753]
We propose a novel type of intrinsic motivation for Reinforcement Learning (RL) that encourages the agent to understand the causal effect of its actions.
We train a neural network to predict the auditory events and use the prediction errors as intrinsic rewards to guide RL exploration.
Experimental results on Atari games show that our new intrinsic motivation significantly outperforms several state-of-the-art baselines.
arXiv Detail & Related papers (2020-07-27T17:59:08Z) - Knowledge Distillation for Action Anticipation via Label Smoothing [21.457069042129138]
Human capability to anticipate near future from visual observations and non-verbal cues is essential for developing intelligent systems.
We implement a multi-modal framework based on long short-term memory (LSTM) networks to summarize past observations and make predictions at different time steps.
Experiments show that label smoothing systematically improves performance of state-of-the-art models for action anticipation.
arXiv Detail & Related papers (2020-04-16T15:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.