論文の概要: VFIMamba: Video Frame Interpolation with State Space Models
- arxiv url: http://arxiv.org/abs/2407.02315v2
- Date: Thu, 10 Oct 2024 03:15:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:29:20.911363
- Title: VFIMamba: Video Frame Interpolation with State Space Models
- Title(参考訳): VFIMamba: 状態空間モデルによるビデオフレーム補間
- Authors: Guozhen Zhang, Chunxu Liu, Yutao Cui, Xiaotong Zhao, Kai Ma, Limin Wang,
- Abstract要約: フレーム間モデリングはビデオフレーム(VFI)の中間フレーム生成において重要である
S6(Selective State Space Models)が登場し、ロングシーケンスモデリングに特化している。
本稿では,S6モデルを用いたフレーム間モデリングのための新しいフレーム手法であるVFIMambaを提案する。
- 参考スコア(独自算出の注目度): 22.862119532060856
- License:
- Abstract: Inter-frame modeling is pivotal in generating intermediate frames for video frame interpolation (VFI). Current approaches predominantly rely on convolution or attention-based models, which often either lack sufficient receptive fields or entail significant computational overheads. Recently, Selective State Space Models (S6) have emerged, tailored specifically for long sequence modeling, offering both linear complexity and data-dependent modeling capabilities. In this paper, we propose VFIMamba, a novel frame interpolation method for efficient and dynamic inter-frame modeling by harnessing the S6 model. Our approach introduces the Mixed-SSM Block (MSB), which initially rearranges tokens from adjacent frames in an interleaved fashion and subsequently applies multi-directional S6 modeling. This design facilitates the efficient transmission of information across frames while upholding linear complexity. Furthermore, we introduce a novel curriculum learning strategy that progressively cultivates proficiency in modeling inter-frame dynamics across varying motion magnitudes, fully unleashing the potential of the S6 model. Experimental findings showcase that our method attains state-of-the-art performance across diverse benchmarks, particularly excelling in high-resolution scenarios. In particular, on the X-TEST dataset, VFIMamba demonstrates a noteworthy improvement of 0.80 dB for 4K frames and 0.96 dB for 2K frames.
- Abstract(参考訳): フレーム間モデリングは、ビデオフレーム補間(VFI)のための中間フレームを生成する上で重要である。
現在のアプローチは、畳み込みや注意に基づくモデルに大きく依存している。
最近、S6(Selective State Space Models)が登場し、長いシーケンスモデリングに特化して、線形複雑性とデータ依存モデリング機能を提供している。
本稿では,S6モデルを用いたフレーム間モデリングのための新しいフレーム補間手法であるVFIMambaを提案する。
提案手法では,Mixed-SSM Block (MSB)を導入し,最初は隣接するフレームからインターリーブ方式でトークンを並べ替え,その後,多方向S6モデリングを適用した。
この設計は、線形複雑性を保ちながら、フレーム間の情報の効率的な伝達を容易にする。
さらに,S6モデルの可能性を完全に解き放ちつつ,異なる動きの規模でフレーム間ダイナミクスをモデル化する習熟度を漸進的に育成する新しいカリキュラム学習戦略を導入する。
実験結果から,本手法は多種多様なベンチマーク,特に高解像度シナリオにおいて,最先端の性能を達成できることが判明した。
特に、X-TESTデータセットでは、VFIMambaは4Kフレームで0.80dB、2Kフレームで0.96dBという注目すべき改善を示している。
関連論文リスト
- FACTS: A Factored State-Space Framework For World Modelling [24.08175276756845]
本研究では,時空間空間モデリングのための新しいリカレントフレームワークであるtextbfFACTored textbfState-space (textbfFACTS) モデルを提案する。
FACTSフレームワークは、置換可能なメモリ表現を学習するルーティング機構を備えたグラフメモリを構築する。
汎用的な世界モデリング設計にもかかわらず、常に最先端のモデルに勝ったり、マッチする。
論文 参考訳(メタデータ) (2024-10-28T11:04:42Z) - PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model [7.286873011001679]
単眼ビデオにおける複雑な人間のポーズ推定のための線形相関を用いたSSMに基づく純粋手法を提案する。
具体的には、各フレーム内だけでなく、フレーム間の人間の関節関係を包括的にモデル化する、双方向の時間的・時間的ブロックを提案する。
この戦略により、より論理的な幾何学的順序付け戦略が提供され、結果として局所空間スキャンが組み合わせられる。
論文 参考訳(メタデータ) (2024-08-07T04:38:03Z) - Disentangled Motion Modeling for Video Frame Interpolation [40.83962594702387]
ビデオフレーム(VFI)は、既存のフレーム間の中間フレームを合成し、視覚的滑らかさと品質を高めることを目的としている。
中間動作モデリングに着目して視覚的品質を高めるVFIの拡散に基づく手法であるDistangled Motion Modeling (MoMo)を導入する。
論文 参考訳(メタデータ) (2024-06-25T03:50:20Z) - Motion-aware Latent Diffusion Models for Video Frame Interpolation [51.78737270917301]
隣接するフレーム間の動き推定は、動きのあいまいさを避ける上で重要な役割を担っている。
我々は、新しい拡散フレームワーク、動き認識潜在拡散モデル(MADiff)を提案する。
提案手法は,既存手法を著しく上回る最先端性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T05:09:56Z) - Implicit Temporal Modeling with Learnable Alignment for Video
Recognition [95.82093301212964]
本稿では,極めて高い性能を達成しつつ,時間的モデリングの労力を最小限に抑える新しいImplicit Learnable Alignment(ILA)法を提案する。
ILAはKineetics-400の88.7%で、Swin-LやViViT-Hに比べてFLOPははるかに少ない。
論文 参考訳(メタデータ) (2023-04-20T17:11:01Z) - AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation [80.33846577924363]
ビデオフレームギスブのための新しいネットワークアーキテクチャであるAMT(All-Pairs Multi-Field Transforms)を提案する。
まず、すべての画素に対して双方向のボリュームを構築し、予測された両側フローを用いて相関関係を検索する。
第2に、入力フレーム上で逆向きのワープを行うために、一対の更新された粗い流れから細粒度の流れ場の複数のグループを導出する。
論文 参考訳(メタデータ) (2023-04-19T16:18:47Z) - Sparsity-guided Network Design for Frame Interpolation [39.828644638174225]
フレームベースアルゴリズムのための圧縮駆動型ネットワーク設計を提案する。
モデルサイズを大幅に削減するために、スパーシリティ誘導最適化によるモデルプルーニングを活用する。
原型AdaCoFの4分の1の大きさで大幅な性能向上を実現しています。
論文 参考訳(メタデータ) (2022-09-09T23:13:25Z) - JNMR: Joint Non-linear Motion Regression for Video Frame Interpolation [47.123769305867775]
ビデオフレーム(VFI)は、双方向の歴史的参照から学習可能な動きを歪曲することでフレームを生成することを目的としている。
我々は、フレーム間の複雑な動きをモデル化するために、VFIをJNMR(Joint Non-linear Motion Regression)戦略として再構成する。
その結果, 関節運動の退行性は, 最先端の方法と比較して有意に向上した。
論文 参考訳(メタデータ) (2022-06-09T02:47:29Z) - ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring [92.40655035360729]
ビデオデブラリングモデルは連続フレームを利用して、カメラの揺動や物体の動きからぼやけを取り除く。
特徴空間におけるボケフレーム間の空間的対応を学習する新しい暗黙的手法を提案する。
提案手法は,新たに収集したビデオデブレーション用ハイフレームレート(1000fps)データセットとともに,広く採用されているDVDデータセット上で評価される。
論文 参考訳(メタデータ) (2021-03-07T04:33:13Z) - All at Once: Temporally Adaptive Multi-Frame Interpolation with Advanced
Motion Modeling [52.425236515695914]
最先端の手法は、一度に1つのフレームを補間する反復解である。
この研究は、真のマルチフレーム補間子を導入している。
時間領域のピラミッドスタイルのネットワークを使用して、複数フレームのタスクをワンショットで完了する。
論文 参考訳(メタデータ) (2020-07-23T02:34:39Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。