CALICO: Confident Active Learning with Integrated Calibration
- URL: http://arxiv.org/abs/2407.02335v1
- Date: Tue, 2 Jul 2024 15:05:19 GMT
- Title: CALICO: Confident Active Learning with Integrated Calibration
- Authors: Lorenzo S. Querol, Hajime Nagahara, Hideaki Hayashi,
- Abstract summary: We propose an AL framework that self-calibrates the confidence used for sample selection during the training process.
We show improved classification performance compared to a softmax-based classifier with fewer labeled samples.
- Score: 11.978551396144532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of deep learning in safety-critical applications, such as medical imaging, has raised concerns about limited labeled data, where this demand is amplified as model complexity increases, posing hurdles for domain experts to annotate data. In response to this, active learning (AL) is used to efficiently train models with limited annotation costs. In the context of deep neural networks (DNNs), AL often uses confidence or probability outputs as a score for selecting the most informative samples. However, modern DNNs exhibit unreliable confidence outputs, making calibration essential. We propose an AL framework that self-calibrates the confidence used for sample selection during the training process, referred to as Confident Active Learning with Integrated CalibratiOn (CALICO). CALICO incorporates the joint training of a classifier and an energy-based model, instead of the standard softmax-based classifier. This approach allows for simultaneous estimation of the input data distribution and the class probabilities during training, improving calibration without needing an additional labeled dataset. Experimental results showcase improved classification performance compared to a softmax-based classifier with fewer labeled samples. Furthermore, the calibration stability of the model is observed to depend on the prior class distribution of the data.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
Semi-supervised learning (SSL) can leverage both labeled and unlabeled data to build a predictive model.
Recent literature suggests that naively applying state-of-the-art SSL with a pretrained model fails to unleash the full potential of training data.
We propose to use pseudo-labels from the unlabelled data to update the feature extractor that is less sensitive to incorrect labels.
arXiv Detail & Related papers (2023-09-09T01:57:14Z) - Model Calibration in Dense Classification with Adaptive Label
Perturbation [44.62722402349157]
Existing dense binary classification models are prone to being over-confident.
We propose Adaptive Label Perturbation (ASLP) which learns a unique label perturbation level for each training image.
ASLP can significantly improve calibration degrees of dense binary classification models on both in-distribution and out-of-distribution data.
arXiv Detail & Related papers (2023-07-25T14:40:11Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
This paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs)
It applies both data-dependent or data-independent regularizers while optimizing over a variational distribution as in Bayesian learning.
Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
arXiv Detail & Related papers (2023-05-12T14:19:15Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
Label distribution skew induced data heterogeniety has been shown to be a significant obstacle that limits the model performance in federated learning.
We propose a simple yet effective framework by introducing a prior-calibrated softmax function for computing the cross-entropy loss.
The improved model performance over existing baselines in the presence of non-IID data and client dropout is demonstrated.
arXiv Detail & Related papers (2023-03-11T05:17:59Z) - DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers [21.741026088202126]
We propose a novel way to certify the robustness of pretrained models using only a few training samples.
Our proposed approach generates class-boundary and interpolated samples corresponding to each training sample.
We obtain significant improvements over the baseline on multiple benchmark datasets and also report similar performance under the challenging black box setup.
arXiv Detail & Related papers (2022-10-17T10:41:18Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.