Light-SLAM: A Robust Deep-Learning Visual SLAM System Based on LightGlue under Challenging Lighting Conditions
- URL: http://arxiv.org/abs/2407.02382v1
- Date: Fri, 10 May 2024 10:54:03 GMT
- Title: Light-SLAM: A Robust Deep-Learning Visual SLAM System Based on LightGlue under Challenging Lighting Conditions
- Authors: Zhiqi Zhao, Chang Wu, Xiaotong Kong, Zejie Lv, Xiaoqi Du, Qiyan Li,
- Abstract summary: We propose a novel hybrid system for visual SLAM based on the LightGlue deep learning network.
We have combined traditional geometry-based approaches to introduce a complete visual SLAM system for monocular, binocular, and RGB-D sensors.
The experimental results show that the proposed method exhibits better accuracy and robustness in adapting to low-light and strongly light-varying environments.
- Score: 2.0397901353954806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) has become a critical technology for intelligent transportation systems and autonomous robots and is widely used in autonomous driving. However, traditional manual feature-based methods in challenging lighting environments make it difficult to ensure robustness and accuracy. Some deep learning-based methods show potential but still have significant drawbacks. To address this problem, we propose a novel hybrid system for visual SLAM based on the LightGlue deep learning network. It uses deep local feature descriptors to replace traditional hand-crafted features and a more efficient and accurate deep network to achieve fast and precise feature matching. Thus, we use the robustness of deep learning to improve the whole system. We have combined traditional geometry-based approaches to introduce a complete visual SLAM system for monocular, binocular, and RGB-D sensors. We thoroughly tested the proposed system on four public datasets: KITTI, EuRoC, TUM, and 4Season, as well as on actual campus scenes. The experimental results show that the proposed method exhibits better accuracy and robustness in adapting to low-light and strongly light-varying environments than traditional manual features and deep learning-based methods. It can also run on GPU in real time.
Related papers
- Apprenticeship-Inspired Elegance: Synergistic Knowledge Distillation Empowers Spiking Neural Networks for Efficient Single-Eye Emotion Recognition [53.359383163184425]
We introduce a novel multimodality synergistic knowledge distillation scheme tailored for efficient single-eye motion recognition tasks.
This method allows a lightweight, unimodal student spiking neural network (SNN) to extract rich knowledge from an event-frame multimodal teacher network.
arXiv Detail & Related papers (2024-06-20T07:24:47Z) - GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
We propose a novel method for representing a scene illuminated by a point light using a set of relightable 3D Gaussian points.
Inspired by the Blinn-Phong model, our approach decomposes the scene into ambient, diffuse, and specular components.
To facilitate the decomposition of geometric information independent of lighting conditions, we introduce a novel bilevel optimization-based meta-learning framework.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - NGD-SLAM: Towards Real-Time Dynamic SLAM without GPU [4.959552873584984]
This paper proposes an open-source real-time dynamic SLAM system that runs solely on CPU by incorporating a mask prediction mechanism.
Our system maintains high localization accuracy in dynamic environments while achieving a tracking frame rate of 56 FPS on a laptop CPU.
arXiv Detail & Related papers (2024-05-12T23:00:53Z) - Depth Completion with Multiple Balanced Bases and Confidence for Dense
Monocular SLAM [34.78726455243436]
We propose a novel method that integrates a light-weight depth completion network into a sparse SLAM system.
Specifically, we present a specifically optimized multi-basis depth completion network, called BBC-Net.
BBC-Net can predict multiple balanced bases and a confidence map from a monocular image with sparse points generated by off-the-shelf keypoint-based SLAM systems.
arXiv Detail & Related papers (2023-09-08T06:15:27Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
We propose a self-supervised learning method for the pre-trained supervised monocular depth networks to enable metrically scaled depth estimation.
Our approach is useful for various applications such as mobile robot navigation and is applicable to diverse environments.
arXiv Detail & Related papers (2022-03-10T12:28:42Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z) - LIFT-SLAM: a deep-learning feature-based monocular visual SLAM method [0.0]
We propose to combine the potential of deep learning-based feature descriptors with the traditional geometry-based VSLAM.
Experiments conducted on KITTI and Euroc datasets show that deep learning can be used to improve the performance of traditional VSLAM systems.
arXiv Detail & Related papers (2021-03-31T20:35:10Z) - DXSLAM: A Robust and Efficient Visual SLAM System with Deep Features [5.319556638040589]
This paper shows that feature extraction with deep convolutional neural networks (CNNs) can be seamlessly incorporated into a modern SLAM framework.
The proposed SLAM system utilizes a state-of-the-art CNN to detect keypoints in each image frame, and to give not only keypoint descriptors, but also a global descriptor of the whole image.
arXiv Detail & Related papers (2020-08-12T16:14:46Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.