A Pattern Language for Machine Learning Tasks
- URL: http://arxiv.org/abs/2407.02424v2
- Date: Sun, 04 May 2025 21:35:48 GMT
- Title: A Pattern Language for Machine Learning Tasks
- Authors: Benjamin Rodatz, Ian Fan, Tuomas Laakkonen, Neil John Ortega, Thomas Hoffmann, Vincent Wang-Mascianica,
- Abstract summary: We formalise the essential data of objective functions as equality constraints on composites of learners.<n>We develop a flowchart-like graphical mathematics for tasks that allows us to; (1) offer a unified perspective of approaches in machine learning across domains; (2) design and optimise desired behaviours model-agnostically; and (3) import insights from theoretical computer science into practical machine learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formalise the essential data of objective functions as equality constraints on composites of learners. We call these constraints "tasks", and we investigate the idealised view that such tasks determine model behaviours. We develop a flowchart-like graphical mathematics for tasks that allows us to; (1) offer a unified perspective of approaches in machine learning across domains; (2) design and optimise desired behaviours model-agnostically; and (3) import insights from theoretical computer science into practical machine learning. As a proof-of-concept of the potential practical impact of our theoretical framework, we exhibit and implement a novel "manipulator" task that minimally edits input data to have a desired attribute. Our model-agnostic approach achieves this end-to-end, and without the need for custom architectures, adversarial training, random sampling, or interventions on the data, hence enabling capable, small-scale, and training-stable models.
Related papers
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - Approach to Finding a Robust Deep Learning Model [0.28675177318965045]
The rapid development of machine learning (ML) and artificial intelligence (AI) applications requires the training of large numbers of models.<n>We propose a novel approach for determining model robustness using a proposed model selection algorithm designed as a meta-algorithm.<n>Within this framework, we address the influence of training sample size, model weight, and inductive bias on the robustness of deep learning models.
arXiv Detail & Related papers (2025-05-22T20:05:20Z) - Statistical Deficiency for Task Inclusion Estimation [24.755448493709604]
Tasks are central in machine learning, as they are the most natural objects to assess the capabilities of current models.<n>This study proposes a theoretically grounded setup to define the notion of task and to compute the bf inclusion between two tasks from a statistical deficiency point of view.
arXiv Detail & Related papers (2025-03-07T15:00:28Z) - Rethinking Meta-Learning from a Learning Lens [35.98940987691948]
We consider how to bridge the gap between theoretical understanding and practical implementation of meta-learning.<n>We propose TRLearner, a plug-and-play method that leverages task relation to calibrate meta-learning.
arXiv Detail & Related papers (2024-09-13T02:00:16Z) - A Generalized Acquisition Function for Preference-based Reward Learning [12.158619866176487]
Preference-based reward learning is a popular technique for teaching robots and autonomous systems how a human user wants them to perform a task.
Previous works have shown that actively synthesizing preference queries to maximize information gain about the reward function parameters improves data efficiency.
We show that it is possible to optimize for learning the reward function up to a behavioral equivalence class, such as inducing the same ranking over behaviors, distribution over choices, or other related definitions of what makes two rewards similar.
arXiv Detail & Related papers (2024-03-09T20:32:17Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
We introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model.
Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning.
arXiv Detail & Related papers (2024-02-19T14:02:31Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z) - Programmatically Grounded, Compositionally Generalizable Robotic
Manipulation [35.12811184353626]
We show that the conventional pretraining-finetuning pipeline for integrating semantic representations entangles the learning of domain-specific action information.
We propose a modular approach to better leverage pretrained models by exploiting the syntactic and semantic structures of language instructions.
Our model successfully disentangles action and perception, translating to improved zero-shot and compositional generalization in a variety of manipulation behaviors.
arXiv Detail & Related papers (2023-04-26T20:56:40Z) - CIPER: Combining Invariant and Equivariant Representations Using
Contrastive and Predictive Learning [6.117084972237769]
We introduce Contrastive Invariant and Predictive Equivariant Representation learning (CIPER)
CIPER comprises both invariant and equivariant learning objectives using one shared encoder and two different output heads on top of the encoder.
We evaluate our method on static image tasks and time-augmented image datasets.
arXiv Detail & Related papers (2023-02-05T07:50:46Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Deep transfer learning for partial differential equations under
conditional shift with DeepONet [0.0]
We propose a novel TL framework for task-specific learning under conditional shift with a deep operator network (DeepONet)
Inspired by the conditional embedding operator theory, we measure the statistical distance between the source domain and the target feature domain.
We show that the proposed TL framework enables fast and efficient multi-task operator learning, despite significant differences between the source and target domains.
arXiv Detail & Related papers (2022-04-20T23:23:38Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
We describe a framework for imitation learning in which goals and observations are represented as a sequence of embeddings.
We demonstrate that this framework enables effective generalization across different environments.
For test tasks involving novel goals or novel scenes, initializing policies with language models improves task completion rates by 43.6%.
arXiv Detail & Related papers (2022-02-03T18:55:52Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
We present a novel pipeline for pool-based Active Learning.
Our method exploits accessible unlabelled examples during training to estimate their co-relation with the labelled examples.
Visual Transformer models non-local visual concept dependency between labelled and unlabelled examples.
arXiv Detail & Related papers (2021-06-07T17:13:59Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - A Weighted Solution to SVM Actionability and Interpretability [0.0]
Actionability is as important as interpretability or explainability of machine learning models, an ongoing and important research topic.
This paper finds a solution to the question of actionability on both linear and non-linear SVM models.
arXiv Detail & Related papers (2020-12-06T20:35:25Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Three Approaches for Personalization with Applications to Federated
Learning [68.19709953755238]
We present a systematic learning-theoretic study of personalization.
We provide learning-theoretic guarantees and efficient algorithms for which we also demonstrate the performance.
All of our algorithms are model-agnostic and work for any hypothesis class.
arXiv Detail & Related papers (2020-02-25T01:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.