Decentralized Intelligence Network (DIN)
- URL: http://arxiv.org/abs/2407.02461v5
- Date: Wed, 4 Sep 2024 17:48:46 GMT
- Title: Decentralized Intelligence Network (DIN)
- Authors: Abraham Nash,
- Abstract summary: Decentralized Intelligence Network (DIN) is a theoretical framework designed to address challenges in AI development.
The framework supports effective AI training by allowing Participants to maintain control over their data, benefit financially, and contribute to a decentralized, scalable ecosystem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized Intelligence Network (DIN) is a theoretical framework designed to address challenges in AI development, particularly focusing on data fragmentation and siloing issues. It facilitates effective AI training within sovereign data networks by overcoming barriers to accessing diverse data sources, leveraging: 1) personal data stores to ensure data sovereignty, where data remains securely within Participants' control; 2) a scalable federated learning protocol implemented on a public blockchain for decentralized AI training, where only model parameter updates are shared, keeping data within the personal data stores; and 3) a scalable, trustless cryptographic rewards mechanism on a public blockchain to incentivize participation and ensure fair reward distribution through a decentralized auditing protocol. This approach guarantees that no entity can prevent or control access to training data or influence financial benefits, as coordination and reward distribution are managed on the public blockchain with an immutable record. The framework supports effective AI training by allowing Participants to maintain control over their data, benefit financially, and contribute to a decentralized, scalable ecosystem that leverages collective AI to develop beneficial algorithms.
Related papers
- AIArena: A Blockchain-Based Decentralized AI Training Platform [3.5828467632119305]
We propose AIArena, a decentralized AI training platform designed to democratize AI development and alignment through on-chain incentive mechanisms.
We instantiate and implement AIArena on the public Base blockchain Sepolia testnet, and the evaluation results demonstrate the feasibility of AIArena in real-world applications.
arXiv Detail & Related papers (2024-12-19T06:35:54Z) - Data sharing in the metaverse with key abuse resistance based on decentralized CP-ABE [17.462884309974097]
Ciphertext-policy-based encryption (CP-ABE) is a promising primitive to provide confidentiality and fine-grained access control.
Few studies have considered CP-ABE key confidentiality and authority accountability simultaneously.
We introduce an open incentive mechanism to encourage honest participation in data sharing.
arXiv Detail & Related papers (2024-12-18T12:06:56Z) - Protocol Learning, Decentralized Frontier Risk and the No-Off Problem [56.74434512241989]
We identify a third paradigm - Protocol Learning - where models are trained across decentralized networks of incentivized participants.
This approach has the potential to aggregate orders of magnitude more computational resources than any single centralized entity.
It also introduces novel challenges: heterogeneous and unreliable nodes, malicious participants, the need for unextractable models to preserve incentives, and complex governance dynamics.
arXiv Detail & Related papers (2024-12-10T19:53:50Z) - Privacy-Preserving Decentralized AI with Confidential Computing [0.7893328752331561]
This paper addresses privacy protection in decentralized Artificial Intelligence (AI) using Confidential Computing (CC) within the Atoma Network.
CC leverages hardware-based Trusted Execution Environments (TEEs) to provide isolation for processing sensitive data.
We explore how we can integrate TEEs into Atoma's decentralized framework.
arXiv Detail & Related papers (2024-10-17T16:50:48Z) - Decentralized Health Intelligence Network (DHIN) [0.0]
Decentralized Health Intelligence Network (DHIN) extends the Decentralized Intelligence Network (DIN) framework to address challenges in healthcare data sovereignty and AI utilization.
Building upon DIN's core principles, DHIN introduces healthcare-specific components to tackle data fragmentation across providers and institutions.
It facilitates effective AI utilization by overcoming barriers to accessing diverse health data sources.
arXiv Detail & Related papers (2024-08-12T15:47:26Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications.
Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs.
We propose a decentralized data-sharing incentive mechanism based on multi-intelligent reinforcement learning to learn the supply-demand balance in markets.
arXiv Detail & Related papers (2024-03-29T14:58:28Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Blockchain-Based Federated Learning: Incentivizing Data Sharing and
Penalizing Dishonest Behavior [0.0]
This paper proposes a comprehensive framework that integrates data trust in federated learning with InterPlanetary File System, blockchain, and smart contracts.
The proposed model is effective in improving the accuracy of federated learning models while ensuring the security and fairness of the data-sharing process.
The research paper also presents a decentralized federated learning platform that successfully trained a CNN model on the MNIST dataset.
arXiv Detail & Related papers (2023-07-19T23:05:49Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.