Decentralized Health Intelligence Network (DHIN)
- URL: http://arxiv.org/abs/2408.06240v4
- Date: Wed, 4 Sep 2024 17:57:39 GMT
- Title: Decentralized Health Intelligence Network (DHIN)
- Authors: Abraham Nash,
- Abstract summary: Decentralized Health Intelligence Network (DHIN) extends the Decentralized Intelligence Network (DIN) framework to address challenges in healthcare data sovereignty and AI utilization.
Building upon DIN's core principles, DHIN introduces healthcare-specific components to tackle data fragmentation across providers and institutions.
It facilitates effective AI utilization by overcoming barriers to accessing diverse health data sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized Health Intelligence Network (DHIN) extends the Decentralized Intelligence Network (DIN) framework to address challenges in healthcare data sovereignty and AI utilization. Building upon DIN's core principles, DHIN introduces healthcare-specific components to tackle data fragmentation across providers and institutions, establishing a sovereign architecture for healthcare provision. It facilitates effective AI utilization by overcoming barriers to accessing diverse health data sources. This comprehensive framework leverages: 1) self-sovereign identity architecture coupled with a personal health record (PHR), extending DIN's personal data stores concept to ensure health data sovereignty; 2) a scalable federated learning (FL) protocol implemented on a public blockchain for decentralized AI training in healthcare, tailored for medical data; and 3) a scalable, trustless rewards mechanism adapted from DIN to incentivize participation in healthcare AI development. DHIN operates on a public blockchain with an immutable record, ensuring that no entity can control access to health data or determine financial benefits. It supports effective AI training while allowing patients to maintain control over their health data, benefit financially, and contribute to a decentralized ecosystem. Unique to DHIN, patients receive rewards in digital wallets as an incentive to opt into the FL protocol, with a long-term roadmap to fund decentralized insurance solutions. This approach introduces a novel, self-financed healthcare model that adapts to individual needs, complements existing systems, and redefines universal coverage, showcasing how DIN principles can transform healthcare data management and AI utilization while empowering patients.
Related papers
- Block MedCare: Advancing healthcare through blockchain integration [0.0]
This paper investigates the integration of blockchain technology in healthcare.
It focuses on its potential to revolutionize Electronic Health Records (EHR) management and data sharing.
We propose a novel system that empowers patients to securely store and manage their medical data.
arXiv Detail & Related papers (2024-10-07T17:54:13Z) - Secure and Transparent Medical Record Management System Using Python and Blockchain [0.0]
We propose a robust health record storage and management system built on blockchain technology.
Unlike traditional databases, blockchain distributes data across a network of nodes, ensuring redundancy and resilience against cyber-attacks.
Our system prioritizes patient empowerment by granting individuals complete control over their health records.
arXiv Detail & Related papers (2024-08-04T16:29:13Z) - Decentralized Intelligence Network (DIN) [0.0]
Decentralized Intelligence Network (DIN) is a theoretical framework designed to address challenges in AI development.
The framework supports effective AI training by allowing Participants to maintain control over their data, benefit financially, and contribute to a decentralized, scalable ecosystem.
arXiv Detail & Related papers (2024-07-02T17:40:06Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - healthAIChain: Improving security and safety using Blockchain Technology
applications in AI-based healthcare systems [0.0]
After bitcoin, blockchain technology has emerged into a general-purpose technology with applications in medical industries and healthcare.
The study delves into the security and safety improvement associated with implementing blockchain in AI-based healthcare systems.
We have also examined the Artificial Intelligence in healthcare and medical industry, potential areas, open questions concerning the blockchain in healthcare systems.
arXiv Detail & Related papers (2023-11-01T20:47:36Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - User-Centric Health Data Using Self-sovereign Identities [69.50862982117127]
This article presents the potential use of the issuers Self-Sovereign Identities (SSI) and Distributed Ledger Technologies (DLT) to improve the privacy and control of health data.
The paper lists the prominent use cases of decentralized identities in the health area, and discusses an effective blockchain-based architecture.
arXiv Detail & Related papers (2021-07-26T17:09:52Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
Economy of Things (EoT) will be based on software agents running on peer-to-peer trustless networks.
We give an overview of current solutions that differ in their fundamental values and technological possibilities.
We propose to combine the strengths of the crypto based, decentralized trustless elements with established and well regulated means of payment.
arXiv Detail & Related papers (2020-07-03T10:45:55Z) - SSHealth: Toward Secure, Blockchain-Enabled Healthcare Systems [13.035267999201935]
This paper presents a novel smart and secure Healthcare system (ssHealth), which permits epidemics discovering, remote monitoring, and fast emergency response.
We develop a blockchain-based architecture and enable a flexible configuration thereof, which optimize medical data sharing between different health entities.
We highlight the benefits of the proposed ssHealth system and possible directions for future research.
arXiv Detail & Related papers (2020-06-18T20:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.