論文の概要: INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness
- arxiv url: http://arxiv.org/abs/2407.02518v2
- Date: Tue, 29 Oct 2024 08:20:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:33.010571
- Title: INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness
- Title(参考訳): INDICT:セキュリティとヘルパーネスの両面に対する批評の内部対話によるコード生成
- Authors: Hung Le, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Doyen Sahoo,
- Abstract要約: INDICTは、安全性と有用性の両方のガイダンスのために、批評家の内的対話で大きな言語モデルを強化する新しいフレームワークである。
内部対話は、安全主導の批評家と役に立つ主導の批評家の二重協調システムである。
提案手法は,安全性と有用性解析の両面において,高度な批判のレベルを提供し,出力コードの品質を著しく向上させる。
- 参考スコア(独自算出の注目度): 110.6921470281479
- License:
- Abstract: Large language models (LLMs) for code are typically trained to align with natural language instructions to closely follow their intentions and requirements. However, in many practical scenarios, it becomes increasingly challenging for these models to navigate the intricate boundary between helpfulness and safety, especially against highly complex yet potentially malicious instructions. In this work, we introduce INDICT: a new framework that empowers LLMs with Internal Dialogues of Critiques for both safety and helpfulness guidance. The internal dialogue is a dual cooperative system between a safety-driven critic and a helpfulness-driven critic. Each critic provides analysis against the given task and corresponding generated response, equipped with external knowledge queried through relevant code snippets and tools like web search and code interpreter. We engage the dual critic system in both code generation stage as well as code execution stage, providing preemptive and post-hoc guidance respectively to LLMs. We evaluated INDICT on 8 diverse tasks across 8 programming languages from 5 benchmarks, using LLMs from 7B to 70B parameters. We observed that our approach can provide an advanced level of critiques of both safety and helpfulness analysis, significantly improving the quality of output codes ($+10\%$ absolute improvements in all models).
- Abstract(参考訳): コードのための大規模言語モデル(LLM)は、通常、意図や要求に忠実に従うために自然言語命令と整合するように訓練される。
しかし、多くの実践シナリオにおいて、これらのモデルが、特に非常に複雑で悪意のある命令に対して、有用性と安全性の間の複雑な境界をナビゲートすることはますます困難になっている。
本研究は,批判内対話によるLLMの安全性と有用性向上のための新しいフレームワークであるINDICTを紹介する。
内部対話は、安全主導の批評家と役に立つ主導の批評家の二重協調システムである。
各批評家は、関連するコードスニペットやWeb検索やコードインタプリタといったツールを通じてクエリされた外部知識を備えた、与えられたタスクとそれに対応する生成されたレスポンスに対して分析を行う。
我々は、コード生成段階とコード実行段階の両方において二重批判システムに従事し、それぞれ LLM に対してプリエンプティブとポストホックのガイダンスを提供する。
我々は,7Bから70Bパラメータの LLM を用いて,8つのプログラム言語に対して,INDICT を5つのベンチマークから8つの多様なタスクで評価した。
提案手法は,安全性と有用性解析の両面での高度な批判を提供するとともに,出力コードの品質を著しく向上させる(+10\%$ 絶対的改善)。
関連論文リスト
- Athena: Safe Autonomous Agents with Verbal Contrastive Learning [3.102303947219617]
大規模言語モデル(LLM)は、様々なタスクを実行するために言語ベースのエージェントとして利用されてきた。
本研究では,言語コントラスト学習の概念を活用したアテナフレームワークを提案する。
このフレームワークには、エージェントを誘導するクオリティ機構も組み込まれており、各ステップにおけるリスクのあるアクションを防ぐ。
論文 参考訳(メタデータ) (2024-08-20T17:21:10Z) - Prompting Techniques for Secure Code Generation: A Systematic Investigation [4.777102838267181]
大規模言語モデル(LLM)は、プロンプト駆動プログラミングによるソフトウェア開発で勢いを増している。
LLMによるNL命令から生成されたコードのセキュリティに異なるプロンプト技術が与える影響について検討する。
論文 参考訳(メタデータ) (2024-07-09T17:38:03Z) - Benchmarking the Communication Competence of Code Generation for LLMs and LLM Agent [2.8391355909797644]
大規模言語モデル(LLM)は、コード生成の分野でタスクを実行する能力を大幅に改善した。
LLMが有能なプログラマであることと、最上位のソフトウェアエンジニアであることの間にはまだギャップがある。
論文 参考訳(メタデータ) (2024-05-31T22:06:18Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
バイナリコード理解におけるLarge Language Models(LLM)の有効性を評価するためのベンチマークを提案する。
評価の結果、既存のLLMはバイナリコードをある程度理解でき、それによってバイナリコード解析の効率が向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T14:44:08Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants [8.573156248244695]
本稿では,LLMを効果的かつ安全に展開できる状況と状況を特定し,理解することに焦点を当てる。
Google の ChatGPT と Bard と Gemini を用いた 4 つの高度な LLM--GPT-3.5 と GPT-4 の比較分析を行い,各モデルのコード生成能力を評価した。
61のコードアウトプットを収集し、機能、セキュリティ、パフォーマンス、複雑さ、信頼性など、さまざまな側面で分析しました。
論文 参考訳(メタデータ) (2024-02-01T15:49:47Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。