Deep Learning Based Apparent Diffusion Coefficient Map Generation from Multi-parametric MR Images for Patients with Diffuse Gliomas
- URL: http://arxiv.org/abs/2407.02616v2
- Date: Thu, 4 Jul 2024 13:36:16 GMT
- Title: Deep Learning Based Apparent Diffusion Coefficient Map Generation from Multi-parametric MR Images for Patients with Diffuse Gliomas
- Authors: Zach Eidex, Mojtaba Safari, Jacob Wynne, Richard L. J. Qiu, Tonghe Wang, David Viar Hernandez, Hui-Kuo Shu, Hui Mao, Xiaofeng Yang,
- Abstract summary: Apparent diffusion coefficient (ADC) maps derived from diffusion weighted (DWI) MRI provide functional measurements about the water molecules in tissues.
This study aims to develop a deep learning framework to synthesize ADC maps from multi-parametric MR images.
- Score: 1.5267759610392577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Apparent diffusion coefficient (ADC) maps derived from diffusion weighted (DWI) MRI provides functional measurements about the water molecules in tissues. However, DWI is time consuming and very susceptible to image artifacts, leading to inaccurate ADC measurements. This study aims to develop a deep learning framework to synthesize ADC maps from multi-parametric MR images. Methods: We proposed the multiparametric residual vision transformer model (MPR-ViT) that leverages the long-range context of ViT layers along with the precision of convolutional operators. Residual blocks throughout the network significantly increasing the representational power of the model. The MPR-ViT model was applied to T1w and T2- fluid attenuated inversion recovery images of 501 glioma cases from a publicly available dataset including preprocessed ADC maps. Selected patients were divided into training (N=400), validation (N=50) and test (N=51) sets, respectively. Using the preprocessed ADC maps as ground truth, model performance was evaluated and compared against the Vision Convolutional Transformer (VCT) and residual vision transformer (ResViT) models. Results: The results are as follows using T1w + T2-FLAIR MRI as inputs: MPR-ViT - PSNR: 31.0 +/- 2.1, MSE: 0.009 +/- 0.0005, SSIM: 0.950 +/- 0.015. In addition, ablation studies showed the relative impact on performance of each input sequence. Both qualitative and quantitative results indicate that the proposed MR- ViT model performs favorably against the ground truth data. Conclusion: We show that high-quality ADC maps can be synthesized from structural MRI using a MPR- VCT model. Our predicted images show better conformality to the ground truth volume than ResViT and VCT predictions. These high-quality synthetic ADC maps would be particularly useful for disease diagnosis and intervention, especially when ADC maps have artifacts or are unavailable.
Related papers
- Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis [43.82741134285203]
We present a physics-informed generative model capable of synthesizing a variable number of brain MRI modalities.
Our approach utilizes latent diffusion models and a two-step generative process.
Experiments demonstrate the efficacy of this approach in generating unseen MR contrasts and preserving physical plausibility.
arXiv Detail & Related papers (2024-09-20T14:21:34Z) - Adaptive Self-Supervised Consistency-Guided Diffusion Model for Accelerated MRI Reconstruction [1.167578793004766]
We propose a self-Supervised deep learning compressed Diffusion sensing MRI (DL)" method.
We used 1,376 and singlecoil brain axial post T1 dataset (T1-w) 50 patients.
It was compared with ReconFormer Transformer and SS-MRI, assessing performance using normalized mean error (NMSE), peak signal-to-noise ratio (PSNR), and similarity index (SSIM)
arXiv Detail & Related papers (2024-06-21T21:22:17Z) - Simulation of acquisition shifts in T2 Flair MR images to stress test AI
segmentation networks [0.0]
The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations.
Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art MS lesion segmentation networks.
arXiv Detail & Related papers (2023-11-03T13:10:55Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
We present an encoder-decoder model for synthesising segmentations of the main cerebral arteries in the circle of Willis (CoW) from only T2 MRI.
It uses learned local attention maps generated by dilating the segmentation labels, which forces the network to only extract information from the T2 MRI relevant to synthesising the CoW.
arXiv Detail & Related papers (2023-08-24T15:32:27Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Cross-Shaped Windows Transformer with Self-supervised Pretraining for Clinically Significant Prostate Cancer Detection in Bi-parametric MRI [6.930082824262643]
We introduce a novel end-to-end Cross-Shaped windows (CSwin) transformer UNet model, CSwin UNet, to detect clinically significant prostate cancer (csPCa) in prostate bi-parametric MR imaging (bpMRI)
Using a large prostate bpMRI dataset with 1500 patients, we first pretrain CSwin transformer using multi-task self-supervised learning to improve data-efficiency and network generalizability.
Five-fold cross validation shows that self-supervised CSwin UNet achieves 0.888 AUC and 0.545 Average Precision (AP), significantly outperforming four comparable models (Swin U
arXiv Detail & Related papers (2023-04-30T04:40:32Z) - Exploring contrast generalisation in deep learning-based brain MRI-to-CT
synthesis [0.0]
MRI protocols may change over time or differ between centres resulting in low-quality sCT.
domain randomisation (DR) to increase the generalisation of a DL model for brain sCT generation.
arXiv Detail & Related papers (2023-03-17T18:45:05Z) - High-fidelity Direct Contrast Synthesis from Magnetic Resonance
Fingerprinting [28.702553164811473]
We propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation.
In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics.
arXiv Detail & Related papers (2022-12-21T07:11:39Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.