論文の概要: RISC-V R-Extension: Advancing Efficiency with Rented-Pipeline for Edge DNN Processing
- arxiv url: http://arxiv.org/abs/2407.02622v1
- Date: Tue, 2 Jul 2024 19:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:24:13.163493
- Title: RISC-V R-Extension: Advancing Efficiency with Rented-Pipeline for Edge DNN Processing
- Title(参考訳): RISC-V R-Extension:Rented-PipelineによるエッジDNN処理の効率化
- Authors: Won Hyeok Kim, Hyeong Jin Kim, Tae Hee Han,
- Abstract要約: 本稿では,エッジデバイス上でのディープニューラルネットワーク(DNN)プロセス効率向上のための新しいアプローチであるRISC-V R-extensionを紹介する。
この拡張はレンタルパイプラインステージとアーキテクチャパイプラインレジスタ(APR)を備えており、クリティカルな操作の実行を最適化し、レイテンシとメモリアクセス頻度を低減している。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of edge devices necessitates efficient computational architectures for lightweight tasks, particularly deep neural network (DNN) inference. Traditional NPUs, though effective for such operations, face challenges in power, cost, and area when integrated into lightweight edge devices. The RISC-V architecture, known for its modularity and open-source nature, offers a viable alternative. This paper introduces the RISC-V R-extension, a novel approach to enhancing DNN process efficiency on edge devices. The extension features rented-pipeline stages and architectural pipeline registers (APR), which optimize critical operation execution, thereby reducing latency and memory access frequency. Furthermore, this extension includes new custom instructions to support these architectural improvements. Through comprehensive analysis, this study demonstrates the boost of R-extension in edge device processing, setting the stage for more responsive and intelligent edge applications.
- Abstract(参考訳): エッジデバイスの普及は、軽量タスク、特にディープニューラルネットワーク(DNN)推論のための効率的な計算アーキテクチャを必要とする。
従来のNPUはそのような操作に有効だが、軽量エッジデバイスに統合された場合、電力、コスト、領域の課題に直面している。
RISC-Vアーキテクチャはモジュラリティとオープンソースの性質で知られており、実行可能な代替手段を提供する。
本稿では,エッジデバイス上でのDNNプロセス効率向上のための新しいアプローチであるRISC-V R-extensionを紹介する。
この拡張はレンタルパイプラインステージとアーキテクチャパイプラインレジスタ(APR)を備えており、クリティカルな操作の実行を最適化し、レイテンシとメモリアクセス頻度を低減している。
さらにこの拡張には、これらのアーキテクチャ改善をサポートするための新しいカスタム命令が含まれている。
包括的解析により,エッジデバイス処理におけるR伸展の促進が示され,より応答性が高くインテリジェントなエッジアプリケーションのためのステージが設定される。
関連論文リスト
- Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
本稿では,ワイヤレスエッジにおけるエネルギー効率,低レイテンシ,高精度な推論のための新しいアルゴリズムを提案する。
本稿では,新しいデータを一連のデバイスで連続的に生成・収集し,動的キューシステムを通じて処理するシナリオについて考察する。
論文 参考訳(メタデータ) (2023-05-18T12:46:42Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
本稿では,アテンション機構の有効性を享受しながら,与えられたネットワークに対してSRPを実現するための,シンプルなアテンション型構造的再パラメータ化(ASR)を提案する。
本稿では,統計的観点から広範囲にわたる実験を行い,Stripe Observationという興味深い現象を発見し,チャネル注意値が訓練中に一定のベクトルに素早く接近することを明らかにする。
論文 参考訳(メタデータ) (2023-04-13T08:52:34Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - IMDeception: Grouped Information Distilling Super-Resolution Network [7.6146285961466]
SISR(Single-Image-Super-Resolution)は、ディープラーニング手法の最近の進歩の恩恵を受けている古典的なコンピュータビジョン問題である。
本稿では,機能集約のためのIICモジュールの代替として,GPRM(Global Progressive Refinement Module)を提案する。
また,1秒あたりのパラメータ数や浮動小数点演算量(FLOPS)をさらに削減するために,GIDB(Grouped Information Distilling Blocks)を提案する。
実験の結果,提案したネットワークは,パラメータ数やFLOPSが限られているにもかかわらず,最先端モデルと同等に動作していることがわかった。
論文 参考訳(メタデータ) (2022-04-25T06:43:45Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Reconfigurable Intelligent Surface Enabled Spatial Multiplexing with
Fully Convolutional Network [40.817290717344534]
RIS(Reconfigurable Surface)は、無線通信システムのための新興技術である。
本稿では,この問題を解決するために完全畳み込みネットワーク(WSNFC)を提案する。
我々は、RISとダイレクトチャネルを経由するカスケードチャネルを含む一連のチャネル機能を設計する。
論文 参考訳(メタデータ) (2022-01-08T14:16:00Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
ニューラルネットワークとディープラーニングが現在の研究パラダイムに影響を与え始めている。
DSPプロセッサは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成的敵ネットワーク操作を実行することができない。
異なるアルゴリズムは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成対向ネットワークにおける高速なパフォーマンスに適合するDSPプロセッサを設計するために適合している。
論文 参考訳(メタデータ) (2021-06-06T13:23:06Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
再構成可能なインテリジェントサーフェス(RIS)の配置と受動ビームフォーミング設計のための新しいフレームワークを提案する。
エネルギー効率を最大化するために、共同配置、位相シフト設計、および電力配分の問題を定式化する。
リアルタイムデータセットを活用することで,ユーザの遠隔交通需要を予測するために,LSTM(Long Short-term memory)ベースのエコー状態ネットワーク(ESN)アルゴリズムを提案する。
RISの展開と設計の連立問題を解くために,D3QNに基づく位置取得と位相制御アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T14:37:38Z) - SHARP: An Adaptable, Energy-Efficient Accelerator for Recurrent Neural
Network [17.928105470385614]
本稿では,RNNの適応性を高めるためのインテリジェントタイル型機構を提案する。
シャープは、異なるRNNモデルとリソース予算を考慮して、平均で2倍、2.8倍、82倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2019-11-04T14:51:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。