論文の概要: MomentsNeRF: Leveraging Orthogonal Moments for Few-Shot Neural Rendering
- arxiv url: http://arxiv.org/abs/2407.02668v1
- Date: Tue, 2 Jul 2024 21:02:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:14:18.361193
- Title: MomentsNeRF: Leveraging Orthogonal Moments for Few-Shot Neural Rendering
- Title(参考訳): MomentsNeRF:Few-Shot Neural Renderingのための直交モーメントの活用
- Authors: Ahmad AlMughrabi, Ricardo Marques, Petia Radeva,
- Abstract要約: ニューラルレンダリングのための新しいフレームワークであるMomentsNeRFを提案する。
当社のアーキテクチャは,マルチシーンでトレーニングを行うための新しいトランスファー学習手法を提供する。
我々のアプローチは、Gabor や Zernike のモーメントから抽出した機能をうまく活用する最初の方法です。
- 参考スコア(独自算出の注目度): 4.6786468967610055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose MomentsNeRF, a novel framework for one- and few-shot neural rendering that predicts a neural representation of a 3D scene using Orthogonal Moments. Our architecture offers a new transfer learning method to train on multi-scenes and incorporate a per-scene optimization using one or a few images at test time. Our approach is the first to successfully harness features extracted from Gabor and Zernike moments, seamlessly integrating them into the NeRF architecture. We show that MomentsNeRF performs better in synthesizing images with complex textures and shapes, achieving a significant noise reduction, artifact elimination, and completing the missing parts compared to the recent one- and few-shot neural rendering frameworks. Extensive experiments on the DTU and Shapenet datasets show that MomentsNeRF improves the state-of-the-art by {3.39\;dB\;PSNR}, 11.1% SSIM, 17.9% LPIPS, and 8.3% DISTS metrics. Moreover, it outperforms state-of-the-art performance for both novel view synthesis and single-image 3D view reconstruction. The source code is accessible at: https://amughrabi.github.io/momentsnerf/.
- Abstract(参考訳): 直交モーメントを用いた3次元シーンのニューラルな表現を予測できる,ワンショットと少数ショットのニューラルレンダリングのための新しいフレームワークであるMomentsNeRFを提案する。
本アーキテクチャは,複数シーンで学習し,テスト時に複数の画像を用いてシーンごとの最適化を行うための新しいトランスファー学習手法を提供する。
我々のアプローチはGabor と Zernike のモーメントから抽出した機能を NeRF アーキテクチャにシームレスに統合した最初のものである。
我々は、MomentsNeRFが複雑なテクスチャや形状の画像を合成し、ノイズ低減、アーチファクト除去を実現し、最近開発された1ショットと数ショットのニューラルレンダリングフレームワークと比較して、欠落した部分を完了したことを示す。
DTUとShapenetデータセットの大規模な実験により、MomentsNeRFは、{3.39\;dB\;PSNR}、11.1%のSSIM、17.9%のLPIPS、8.3%の DisTSメトリクスで最先端を改善することが示された。
さらに、新しいビュー合成とシングルイメージの3Dビュー再構成の両方において、最先端のパフォーマンスを向上する。
ソースコードは、https://amughrabi.github.io/momentsnerf/.comでアクセスできる。
関連論文リスト
- Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections [25.154665328053333]
Splatfacto-Wは、ガウスごとのニューラルカラー特徴と画像ごとの外観をレンダリングプロセスに組み込む、自明なアプローチである。
提案手法は,3DGSに比べて平均5.3dBのPak Signal-to-Noise Ratio(PSNR)を向上し,NeRF法に比べて150倍のトレーニング速度を向上し,3DGSと同様のレンダリング速度を実現する。
論文 参考訳(メタデータ) (2024-07-17T04:02:54Z) - Splatter Image: Ultra-Fast Single-View 3D Reconstruction [67.96212093828179]
Splatter ImageはGaussian Splattingをベースにしており、複数の画像から3Dシーンを高速かつ高品質に再現することができる。
テスト時に38FPSでフィードフォワードで再構成を行うニューラルネットワークを学習する。
いくつかの総合、実、マルチカテゴリ、大規模ベンチマークデータセットにおいて、トレーニング中にPSNR、LPIPS、その他のメトリクスでより良い結果を得る。
論文 参考訳(メタデータ) (2023-12-20T16:14:58Z) - S3IM: Stochastic Structural SIMilarity and Its Unreasonable
Effectiveness for Neural Fields [46.9880016170926]
構造的シミュラリティ(S3IM)損失は,複数の入力を個別に多重化するのではなく,複数のデータポイントを集合として処理することを示す。
我々の実験は、ほぼ自由なNeRFと神経表面表現の改善におけるS3IMの有効性を実証した。
論文 参考訳(メタデータ) (2023-08-14T09:45:28Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
SfMNeRFは,新規な視点の合成と3次元シーン形状の再構成を行う手法である。
SfMNeRFは、エピポーラ性、光度整合性、深さの滑らかさ、および3Dシーン構造を明示的に再構成するためにマッチ位置制約を用いる。
2つの公開データセットの実験では、SfMNeRFが最先端のアプローチを上回ることが示されている。
論文 参考訳(メタデータ) (2023-04-11T13:37:17Z) - View Synthesis with Sculpted Neural Points [64.40344086212279]
暗黙の神経表現は印象的な視覚的品質を達成したが、計算効率に欠点がある。
本稿では,点雲を用いたビュー合成を行う新しい手法を提案する。
レンダリング速度を100倍以上速くしながら、NeRFよりも視覚的品質を向上する最初のポイントベース手法である。
論文 参考訳(メタデータ) (2022-05-12T03:54:35Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
我々は、ニューラルネットワーク(NeRF)を活用して、建物にまたがる大規模な視覚的キャプチャーや、主にドローンデータから収集された複数の都市ブロックからインタラクティブな3D環境を構築する方法について検討する。
NeRFが伝統的に評価されている単一のオブジェクトシーンとは対照的に、この設定には複数の課題がある。
我々は、訓練画像(またはむしろピクセル)を、並列で訓練できる異なるNeRFサブモジュールに分割する単純なクラスタリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2021-12-20T17:40:48Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRFは、1つまたは少数の入力画像に条件付された連続的なニューラルシーン表現を予測する学習フレームワークである。
本研究では,単一画像の新規ビュー合成タスクのためのShapeNetベンチマーク実験を行った。
いずれの場合も、ピクセルNeRFは、新しいビュー合成とシングルイメージ3D再構成のための最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-12-03T18:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。