Output Range Analysis for Deep Neural Networks based on Simulated Annealing Processes
- URL: http://arxiv.org/abs/2407.02700v1
- Date: Tue, 2 Jul 2024 22:47:40 GMT
- Title: Output Range Analysis for Deep Neural Networks based on Simulated Annealing Processes
- Authors: Helder Rojas, Nilton Rojas, Espinoza J. B., Luis Huamanchumo,
- Abstract summary: This paper introduces a novel approach to range estimation for Deep Neural Networks (DNNs)
Our approach addresses the lack of local geometric information and high non-linearity in DNNs, making it versatile.
We present a straightforward,friendly algorithm that avoids restrictive assumptions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper tackles the challenging problem of output range estimation for Deep Neural Networks (DNNs), introducing a novel algorithm based on Simulated Annealing (SA). Our approach addresses the lack of local geometric information and high non-linearity in DNNs, making it versatile across various architectures, especially Residual Neural Networks (ResNets). We present a straightforward, implementation-friendly algorithm that avoids restrictive assumptions about network architecture. Through theoretical analysis and experimental evaluations, including tests on the Ackley function, we demonstrate our algorithm's effectiveness in navigating complex, non-convex surfaces and accurately estimating DNN output ranges. Futhermore, the Python codes of this experimental evaluation that support our results are available in our GitHub repository (https://github.com/Nicerova7/output-range-analysis-for-deep-neural-networks-with-simulated-annealin g).
Related papers
- Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
We introduce a novel class of Deep Sparse Coding (DSC) models.
We derive convergence rates for CNNs in their ability to extract sparse features.
Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
arXiv Detail & Related papers (2024-08-10T12:43:55Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - Variational Inference for Infinitely Deep Neural Networks [0.4061135251278187]
unbounded depth neural network (UDN)
We introduce the unbounded depth neural network (UDN), an infinitely deep probabilistic model that adapts its complexity to the training data.
We study the UDN on real and synthetic data.
arXiv Detail & Related papers (2022-09-21T03:54:34Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Imbedding Deep Neural Networks [0.0]
Continuous depth neural networks, such as Neural ODEs, have refashioned the understanding of residual neural networks in terms of non-linear vector-valued optimal control problems.
We propose a new approach which explicates the network's depth' as a fundamental variable, thus reducing the problem to a system of forward-facing initial value problems.
arXiv Detail & Related papers (2022-01-31T22:00:41Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Abstraction based Output Range Analysis for Neural Networks [10.051309746913512]
We consider the problem of output range analysis for feed-forward neural networks with ReLU activation functions.
Existing approaches reduce the output range analysis problem to satisfiability and optimization solving.
We present a novel abstraction technique that constructs a simpler neural network with fewer neurons.
arXiv Detail & Related papers (2020-07-18T22:24:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.