MentalAgora: A Gateway to Advanced Personalized Care in Mental Health through Multi-Agent Debating and Attribute Control
- URL: http://arxiv.org/abs/2407.02736v1
- Date: Wed, 3 Jul 2024 01:19:38 GMT
- Title: MentalAgora: A Gateway to Advanced Personalized Care in Mental Health through Multi-Agent Debating and Attribute Control
- Authors: Yeonji Lee, Sangjun Park, Kyunghyun Cho, JinYeong Bak,
- Abstract summary: MentalAgora is a novel framework employing large language models enhanced by interaction between multiple agents for tailored mental health support.
This framework operates through three stages: strategic debating, tailored counselor creation, and response generation.
Our evaluations, including experiments and user studies, demonstrate that MentalAgora aligns with professional standards and effectively meets user preferences.
- Score: 40.21489535255022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As mental health issues globally escalate, there is a tremendous need for advanced digital support systems. We introduce MentalAgora, a novel framework employing large language models enhanced by interaction between multiple agents for tailored mental health support. This framework operates through three stages: strategic debating, tailored counselor creation, and response generation, enabling the dynamic customization of responses based on individual user preferences and therapeutic needs. We conduct experiments utilizing a high-quality evaluation dataset TherapyTalk crafted with mental health professionals, shwoing that MentalAgora generates expert-aligned and user preference-enhanced responses. Our evaluations, including experiments and user studies, demonstrate that MentalAgora aligns with professional standards and effectively meets user preferences, setting a new benchmark for digital mental health interventions.
Related papers
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - Towards Understanding Emotions for Engaged Mental Health Conversations [1.3654846342364306]
We are developing a system to perform passive emotion-sensing using a combination of keystroke dynamics and sentiment analysis.
The analysis of short text messages and keyboard typing patterns can provide emotion information that may be used to support both clients and responders.
arXiv Detail & Related papers (2024-06-17T01:27:15Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Enhancing Psychological Counseling with Large Language Model: A
Multifaceted Decision-Support System for Non-Professionals [31.01304974679576]
This paper introduces a novel model constructed on the foundation of large language models to assist non-professionals in providing psychological interventions on online user discourses.
A comprehensive study was conducted involving ten professional psychological counselors of varying expertise, evaluating the system.
The findings affirm that our system is capable of analyzing patients' issues with relative accuracy and proffering professional-level strategies recommendations.
arXiv Detail & Related papers (2023-08-29T10:20:53Z) - Psy-LLM: Scaling up Global Mental Health Psychological Services with
AI-based Large Language Models [3.650517404744655]
Psy-LLM framework is an AI-based tool leveraging Large Language Models for question-answering in psychological consultation settings.
Our framework combines pre-trained LLMs with real-world professional Q&A from psychologists and extensively crawled psychological articles.
It serves as a front-end tool for healthcare professionals, allowing them to provide immediate responses and mindfulness activities to alleviate patient stress.
arXiv Detail & Related papers (2023-07-22T06:21:41Z) - "Am I A Good Therapist?" Automated Evaluation Of Psychotherapy Skills
Using Speech And Language Technologies [38.726068038788384]
We describe our platform and its performance, using a dataset of more than 5,000 recordings.
Our system gives comprehensive feedback to the therapist, including information about the dynamics of the session.
We are confident that a widespread use of automated psychotherapy rating tools in the near future will augment experts' capabilities.
arXiv Detail & Related papers (2021-02-22T18:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.