MAGI: Multi-Agent Guided Interview for Psychiatric Assessment
- URL: http://arxiv.org/abs/2504.18260v1
- Date: Fri, 25 Apr 2025 11:08:27 GMT
- Title: MAGI: Multi-Agent Guided Interview for Psychiatric Assessment
- Authors: Guanqun Bi, Zhuang Chen, Zhoufu Liu, Hongkai Wang, Xiyao Xiao, Yuqiang Xie, Wen Zhang, Yongkang Huang, Yuxuan Chen, Libiao Peng, Yi Feng, Minlie Huang,
- Abstract summary: We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational navigation.<n>We show that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
- Score: 50.6150986786028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating structured clinical interviews could revolutionize mental healthcare accessibility, yet existing large language models (LLMs) approaches fail to align with psychiatric diagnostic protocols. We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational workflows through coordinated multi-agent collaboration. MAGI dynamically navigates clinical logic via four specialized agents: 1) an interview tree guided navigation agent adhering to the MINI's branching structure, 2) an adaptive question agent blending diagnostic probing, explaining, and empathy, 3) a judgment agent validating whether the response from participants meet the node, and 4) a diagnosis Agent generating Psychometric Chain-of- Thought (PsyCoT) traces that explicitly map symptoms to clinical criteria. Experimental results on 1,002 real-world participants covering depression, generalized anxiety, social anxiety and suicide shows that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
Related papers
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - PSYCHE: A Multi-faceted Patient Simulation Framework for Evaluation of Psychiatric Assessment Conversational Agents [2.8216674865505627]
Psychiatric assessment conversational agents (PACAs) aim to simulate the role of psychiatrists in clinical evaluations.<n>Here, we propose PSYCHE, a novel framework designed to enable the 1) clinically relevant, 2) ethically safe, 3) cost-efficient, and 4) quantitative evaluation of PACAs.<n>This is achieved by simulating psychiatric patients based on a multi-faceted psychiatric construct that defines the simulated patients' profiles, histories, and behaviors.
arXiv Detail & Related papers (2025-01-03T01:38:46Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.<n>We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Depression Diagnosis Dialogue Simulation: Self-improving Psychiatrist with Tertiary Memory [35.41386783586689]
This paper introduces the Agent Mental Clinic (AMC), a self-improving conversational agent system designed to enhance depression diagnosis through simulated dialogues between patient and psychiatrist agents.
We design a psychiatrist agent consisting of a tertiary memory structure, a dialogue control and a memory sampling module, fully leveraging the skills reflected by the psychiatrist agent, achieving great accuracy on depression risk and suicide risk diagnosis via conversation.
arXiv Detail & Related papers (2024-09-20T14:25:08Z) - MDD-5k: A New Diagnostic Conversation Dataset for Mental Disorders Synthesized via Neuro-Symbolic LLM Agents [25.987334407396396]
We design a neuro-symbolic multi-agent framework for synthesizing the diagnostic conversation of mental disorders.<n>We develop the largest Chinese mental disorders diagnosis dataset MDD-5k.
arXiv Detail & Related papers (2024-08-22T05:59:47Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Chain-of-Interaction: Enhancing Large Language Models for Psychiatric Behavior Understanding by Dyadic Contexts [4.403408362362806]
We introduce the Chain-of-Interaction prompting method to contextualize large language models for psychiatric decision support by the dyadic interactions.
This approach enables large language models to leverage the coding scheme, patient state, and domain knowledge for patient behavioral coding.
arXiv Detail & Related papers (2024-03-20T17:47:49Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.