論文の概要: Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data
- arxiv url: http://arxiv.org/abs/2407.02750v1
- Date: Wed, 3 Jul 2024 01:51:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:54:34.719473
- Title: Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data
- Title(参考訳): 削減学習:構造化データにおける大規模言語モデルの性能向上に向けて
- Authors: Younghun Lee, Sungchul Kim, Ryan A. Rossi, Tong Yu, Xiang Chen,
- Abstract要約: 大規模言語モデル(LLM)は、幅広い下流タスクにおいて有能なパフォーマンスを実現している。
本稿では、オン・ポリシー・ラーニングを用いて言語モデルを微調整し、入力された構造化データの縮小版を生成するフレームワークであるLearning to Reduceを提案する。
- 参考スコア(独自算出の注目度): 39.29778853025738
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have been achieving competent performance on a wide range of downstream tasks, yet existing work shows that inference on structured data is challenging for LLMs. This is because LLMs need to either understand long structured data or select the most relevant evidence before inference, and both approaches are not trivial. This paper proposes a framework, Learning to Reduce, that fine-tunes a language model with On-Policy Learning to generate a reduced version of an input structured data. When compared to state-of-the-art LLMs like GPT-4, Learning to Reduce not only achieves outstanding performance in reducing the input, but shows generalizability on different datasets. We further show that the model fine-tuned with our framework helps LLMs better perform on table QA tasks especially when the context is longer.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い下流タスクにおいて有能なパフォーマンスを実現してきたが、既存の研究は、構造化データに対する推論がLLMにとって難しいことを示している。
これは、LLMが長い構造化データを理解するか、推論の前に最も関係のある証拠を選択する必要があるためであり、どちらのアプローチも自明ではないからである。
本稿では、オン・ポリシー・ラーニングを用いて言語モデルを微調整し、入力された構造化データの縮小版を生成するフレームワークであるLearning to Reduceを提案する。
GPT-4のような最先端のLLMと比較すると、Learning to Reduceは入力の削減において優れたパフォーマンスを達成するだけでなく、異なるデータセットに対する一般化性を示す。
さらに、我々のフレームワークで微調整されたモデルは、特にコンテキストが長い場合、LLMがテーブルQAタスクでより良く機能することを示します。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Small Language Model Is a Good Guide for Large Language Model in Chinese
Entity Relation Extraction [13.344709924683471]
本稿では,モデルコラボレーションフレームワークSLCoLMを提案する。
textit-Training-Guide-Predict' 戦略を用いて,事前学習言語モデル (PLM) と大規模言語モデル (LLM) の強みを組み合わせる。
関係型に富んだREデータセットに対する実験により,本論文のアプローチが長い関係型のREを促進することを示す。
論文 参考訳(メタデータ) (2024-02-22T08:26:56Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
本研究では,大規模言語モデル(LLM)の性能向上にトレーニングデータを活用するという課題に,微調整なしで対処する。
我々は、数発のプロンプトによってLSMから候補のプールを作成し、コンパクトモデルLM-corrector(LMCor)を用いて、これらの候補をマージして拡張出力を生成するように特別に訓練した。
4つの自然言語生成タスクの実験により、小さな LMCor モデル (250M) でさえ、LLM (62B) の少数ショット性能を大幅に改善し、マッチングや標準微調整よりも優れることを示した。
論文 参考訳(メタデータ) (2023-05-22T22:07:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。