論文の概要: SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network
- arxiv url: http://arxiv.org/abs/2407.02762v1
- Date: Wed, 3 Jul 2024 02:40:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:54:34.707583
- Title: SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network
- Title(参考訳): SF-GNN:ディープグラフニューラルネットワークにおけるメッセージロスレス伝播のためのセルフフィルタ
- Authors: Yushan Zhu, Wen Zhang, Yajing Xu, Zhen Yao, Mingyang Chen, Huajun Chen,
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
- 参考スコア(独自算出の注目度): 38.669815079957566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Network (GNN), with the main idea of encoding graph structure information of graphs by propagation and aggregation, has developed rapidly. It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs. However, merely stacking GNN layers may not improve the model's performance and can even be detrimental. For the phenomenon of performance degradation in deep GNNs, we propose a new perspective. Unlike the popular explanations of over-smoothing or over-squashing, we think the issue arises from the interference of low-quality node representations during message propagation. We introduce a simple and general method, SF-GNN, to address this problem. In SF-GNN, we define two representations for each node, one is the node representation that represents the feature of the node itself, and the other is the message representation specifically for propagating messages to neighbor nodes. A self-filter module evaluates the quality of the node representation and decides whether to integrate it into the message propagation based on this quality assessment. Experiments on node classification tasks for both homogeneous and heterogeneous graphs, as well as link prediction tasks on knowledge graphs, demonstrate that our method can be applied to various GNN models and outperforms state-of-the-art baseline methods in addressing deep GNN degradation.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とし,急速に発展してきた。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
しかし、単にGNNレイヤを積み重ねるだけでは、モデルの性能が向上せず、有害である可能性さえある。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
オーバー・スムーシングやオーバー・スカッシングの一般的な説明とは異なり、メッセージの伝搬中に低品質なノード表現が干渉されることで問題が発生すると考える。
この問題に対処するために, 単純で汎用的な SF-GNN を提案する。
SF-GNNでは,各ノードに対する2つの表現を定義し,その1つはノード自体の特徴を表すノード表現であり,もう1つは隣接するノードにメッセージを伝達するためのメッセージ表現である。
自己フィルタモジュールはノード表現の品質を評価し、この品質評価に基づいてメッセージ伝搬に統合するかどうかを決定する。
同種グラフと異種グラフのノード分類タスクおよび知識グラフのリンク予測タスクの実験により,本手法が様々なGNNモデルに適用可能であることを示し,GNNの深い劣化に対処する上で,最先端のベースライン法より優れていることを示す。
関連論文リスト
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [5.431036185361236]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - NCGNN: Node-level Capsule Graph Neural Network [45.23653314235767]
ノードレベルカプセルグラフニューラルネットワーク(ncgnn)は、ノードをカプセル群として表現する。
凝集に適したカプセルを適応的に選択する新しい動的ルーティング手法を開発した。
NCGNNは、過度にスムースな問題に対処でき、分類のためのより良いノード埋め込みを生成することで、芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-12-07T06:46:17Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力な技術である。
本研究では,ノードとグラフ表現を対話的に学習する統合モデルAdamGNNを提案する。
14の実世界のグラフデータセットに対する実験により、AdamGNNはノードとグラフの両方のタスクにおいて17の競合するモデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2020-10-01T07:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。