Knowledge Transfer with Simulated Inter-Image Erasing for Weakly Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2407.02768v1
- Date: Wed, 3 Jul 2024 02:54:33 GMT
- Title: Knowledge Transfer with Simulated Inter-Image Erasing for Weakly Supervised Semantic Segmentation
- Authors: Tao Chen, XiRuo Jiang, Gensheng Pei, Zeren Sun, Yucheng Wang, Yazhou Yao,
- Abstract summary: We propose a textbfKnowledge textbfTransfer with textbfSimulated Inter-Image textbfErasing (KTSE) approach for weakly supervised semantic segmentation.
- Score: 28.233690786378393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though adversarial erasing has prevailed in weakly supervised semantic segmentation to help activate integral object regions, existing approaches still suffer from the dilemma of under-activation and over-expansion due to the difficulty in determining when to stop erasing. In this paper, we propose a \textbf{K}nowledge \textbf{T}ransfer with \textbf{S}imulated Inter-Image \textbf{E}rasing (KTSE) approach for weakly supervised semantic segmentation to alleviate the above problem. In contrast to existing erasing-based methods that remove the discriminative part for more object discovery, we propose a simulated inter-image erasing scenario to weaken the original activation by introducing extra object information. Then, object knowledge is transferred from the anchor image to the consequent less activated localization map to strengthen network localization ability. Considering the adopted bidirectional alignment will also weaken the anchor image activation if appropriate constraints are missing, we propose a self-supervised regularization module to maintain the reliable activation in discriminative regions and improve the inter-class object boundary recognition for complex images with multiple categories of objects. In addition, we resort to intra-image erasing and propose a multi-granularity alignment module to gently enlarge the object activation to boost the object knowledge transfer. Extensive experiments and ablation studies on PASCAL VOC 2012 and COCO datasets demonstrate the superiority of our proposed approach. Source codes and models are available at https://github.com/NUST-Machine-Intelligence-Laboratory/KTSE.
Related papers
- Spatial Structure Constraints for Weakly Supervised Semantic
Segmentation [100.0316479167605]
A class activation map (CAM) can only locate the most discriminative part of objects.
We propose spatial structure constraints (SSC) for weakly supervised semantic segmentation to alleviate the unwanted object over-activation of attention expansion.
Our approach achieves 72.7% and 47.0% mIoU on the PASCAL VOC 2012 and COCO datasets, respectively.
arXiv Detail & Related papers (2024-01-20T05:25:25Z) - HEAP: Unsupervised Object Discovery and Localization with Contrastive
Grouping [29.678756772610797]
Unsupervised object discovery and localization aims to detect or segment objects in an image without any supervision.
Recent efforts have demonstrated a notable potential to identify salient foreground objects by utilizing self-supervised transformer features.
To address these problems, we introduce Hierarchical mErging framework via contrAstive grouPing (HEAP)
arXiv Detail & Related papers (2023-12-29T06:46:37Z) - Semantic-Constraint Matching Transformer for Weakly Supervised Object
Localization [31.039698757869974]
Weakly supervised object localization (WSOL) strives to learn to localize objects with only image-level supervision.
Previous CNN-based methods suffer from partial activation issues, concentrating on the object's discriminative part instead of the entire entity scope.
We propose a novel Semantic-Constraint Matching Network (SCMN) via a transformer to converge on the divergent activation.
arXiv Detail & Related papers (2023-09-04T03:20:31Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Saliency Guided Inter- and Intra-Class Relation Constraints for Weakly
Supervised Semantic Segmentation [66.87777732230884]
We propose a saliency guided Inter- and Intra-Class Relation Constrained (I$2$CRC) framework to assist the expansion of the activated object regions.
We also introduce an object guided label refinement module to take a full use of both the segmentation prediction and the initial labels for obtaining superior pseudo-labels.
arXiv Detail & Related papers (2022-06-20T03:40:56Z) - Self-Supervised Video Object Segmentation via Cutout Prediction and
Tagging [117.73967303377381]
We propose a novel self-supervised Video Object (VOS) approach that strives to achieve better object-background discriminability.
Our approach is based on a discriminative learning loss formulation that takes into account both object and background information.
Our proposed approach, CT-VOS, achieves state-of-the-art results on two challenging benchmarks: DAVIS-2017 and Youtube-VOS.
arXiv Detail & Related papers (2022-04-22T17:53:27Z) - Anti-Adversarially Manipulated Attributions for Weakly Supervised
Semantic Segmentation and Object Localization [31.69344455448125]
We present an attribution map of an image that is manipulated to increase the classification score produced by a classifier before the final softmax or sigmoid layer.
This manipulation is realized in an anti-adversarial manner, so that the original image is perturbed along pixel gradients in directions opposite to those used in an adversarial attack.
In addition, we introduce a new regularization procedure that inhibits the incorrect attribution of regions unrelated to the target object and the excessive concentration of attributions on a small region of the target object.
arXiv Detail & Related papers (2022-04-11T06:18:02Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
arXiv Detail & Related papers (2021-04-06T13:14:20Z) - Non-Salient Region Object Mining for Weakly Supervised Semantic
Segmentation [64.2719590819468]
We propose a non-salient region object mining approach for weakly supervised semantic segmentation.
A potential object mining module is proposed to reduce the false-negative rate in pseudo labels.
Our non-salient region masking module helps further discover the objects in the non-salient region.
arXiv Detail & Related papers (2021-03-26T16:44:03Z) - Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [93.83369981759996]
We propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap.
Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation.
We propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning.
arXiv Detail & Related papers (2020-04-09T14:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.