Weakly supervised segmentation with cross-modality equivariant
constraints
- URL: http://arxiv.org/abs/2104.02488v1
- Date: Tue, 6 Apr 2021 13:14:20 GMT
- Title: Weakly supervised segmentation with cross-modality equivariant
constraints
- Authors: Gaurav Patel and Jose Dolz
- Abstract summary: Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
- Score: 7.757293476741071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised learning has emerged as an appealing alternative to
alleviate the need for large labeled datasets in semantic segmentation. Most
current approaches exploit class activation maps (CAMs), which can be generated
from image-level annotations. Nevertheless, resulting maps have been
demonstrated to be highly discriminant, failing to serve as optimal proxy
pixel-level labels. We present a novel learning strategy that leverages
self-supervision in a multi-modal image scenario to significantly enhance
original CAMs. In particular, the proposed method is based on two observations.
First, the learning of fully-supervised segmentation networks implicitly
imposes equivariance by means of data augmentation, whereas this implicit
constraint disappears on CAMs generated with image tags. And second, the
commonalities between image modalities can be employed as an efficient
self-supervisory signal, correcting the inconsistency shown by CAMs obtained
across multiple modalities. To effectively train our model, we integrate a
novel loss function that includes a within-modality and a cross-modality
equivariant term to explicitly impose these constraints during training. In
addition, we add a KL-divergence on the class prediction distributions to
facilitate the information exchange between modalities, which, combined with
the equivariant regularizers further improves the performance of our model.
Exhaustive experiments on the popular multi-modal BRATS dataset demonstrate
that our approach outperforms relevant recent literature under the same
learning conditions.
Related papers
- Unsupervised Representation Learning by Balanced Self Attention Matching [2.3020018305241337]
We present a self-supervised method for embedding image features called BAM.
We obtain rich representations and avoid feature collapse by minimizing a loss that matches these distributions to their globally balanced and entropy regularized version.
We show competitive performance with leading methods on both semi-supervised and transfer-learning benchmarks.
arXiv Detail & Related papers (2024-08-04T12:52:44Z) - Continual Panoptic Perception: Towards Multi-modal Incremental Interpretation of Remote Sensing Images [16.0258685984844]
Continual learning (CL) breaks off the one-way training manner and enables a model to adapt to new data, semantics and tasks continuously.
We propose a unified continual learning model that leverages multi-task joint learning covering pixel-level classification, instance-level segmentation and image-level perception.
arXiv Detail & Related papers (2024-07-19T12:22:32Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
We present a transformer-based end-to-end ZSL method named DUET.
We develop a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images.
We find that DUET can often achieve state-of-the-art performance, its components are effective and its predictions are interpretable.
arXiv Detail & Related papers (2022-07-04T11:12:12Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Learning Aligned Cross-Modal Representation for Generalized Zero-Shot
Classification [17.177622259867515]
We propose an innovative autoencoder network by learning Aligned Cross-Modal Representations (dubbed ACMR) for Generalized Zero-Shot Classification (GZSC)
Specifically, we propose a novel Vision-Semantic Alignment (VSA) method to strengthen the alignment of cross-modal latent features on the latent subspaces guided by a learned classifier.
In addition, we propose a novel Information Enhancement Module (IEM) to reduce the possibility of latent variables collapse meanwhile encouraging the discriminative ability of latent variables.
arXiv Detail & Related papers (2021-12-24T03:35:37Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [93.83369981759996]
We propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap.
Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation.
We propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning.
arXiv Detail & Related papers (2020-04-09T14:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.