Investigating the Contextualised Word Embedding Dimensions Specified for Contextual and Temporal Semantic Changes
- URL: http://arxiv.org/abs/2407.02820v2
- Date: Tue, 03 Dec 2024 20:56:16 GMT
- Title: Investigating the Contextualised Word Embedding Dimensions Specified for Contextual and Temporal Semantic Changes
- Authors: Taichi Aida, Danushka Bollegala,
- Abstract summary: A sense-aware contextualised word embeddings (SCWEs) encode semantic changes of words within the contextualised word embedding (CWE) spaces.
It remains unclear as to how the meaning changes are encoded in the embedding space.
We compare pre-trained CWEs and their fine-tuned versions on contextual and temporal semantic change benchmarks.
- Score: 30.563130208194977
- License:
- Abstract: The sense-aware contextualised word embeddings (SCWEs) encode semantic changes of words within the contextualised word embedding (CWE) spaces. Despite the superior performance of SCWEs in contextual/temporal semantic change detection (SCD) benchmarks, it remains unclear as to how the meaning changes are encoded in the embedding space. To study this, we compare pre-trained CWEs and their fine-tuned versions on contextual and temporal semantic change benchmarks under Principal Component Analysis (PCA) and Independent Component Analysis (ICA) transformations. Our experimental results reveal (a) although there exist a smaller number of axes that are specific to semantic changes of words in the pre-trained CWE space, this information gets distributed across all dimensions when fine-tuned, and (b) in contrast to prior work studying the geometry of CWEs, we find that PCA to better represent semantic changes than ICA within the top 10% of axes. These findings encourage the development of more efficient SCD methods with a small number of SCD-aware dimensions. Source code is available at https://github.com/LivNLP/svp-dims .
Related papers
- Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective [50.261681681643076]
We propose a novel metric called SemVarEffect and a benchmark named SemVarBench to evaluate the causality between semantic variations in inputs and outputs in text-to-image synthesis.
Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding.
arXiv Detail & Related papers (2024-10-14T08:45:35Z) - A Systematic Comparison of Contextualized Word Embeddings for Lexical
Semantic Change [0.696194614504832]
We evaluate state-of-the-art models and approaches for Graded Change Detection (GCD)
We break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels.
Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4.
arXiv Detail & Related papers (2024-02-19T10:04:59Z) - Align, Perturb and Decouple: Toward Better Leverage of Difference
Information for RSI Change Detection [24.249552791014644]
Change detection is a widely adopted technique in remote sense imagery (RSI) analysis.
We propose a series of operations to fully exploit the difference information: Alignment, Perturbation and Decoupling.
arXiv Detail & Related papers (2023-05-30T03:39:53Z) - A Survey on Contextualised Semantic Shift Detection [0.0]
Semantic Shift Detection (SSD) is the task of identifying, interpreting, and assessing the possible change over time in the meanings of a target word.
We propose a classification framework characterised by meaning representation, time-awareness, and learning modality dimensions.
arXiv Detail & Related papers (2023-04-04T09:50:19Z) - Joint Spatio-Temporal Modeling for the Semantic Change Detection in
Remote Sensing Images [22.72105435238235]
We propose a Semantic Change (SCanFormer) to explicitly model the 'from-to' semantic transitions between the bi-temporal RSIss.
Then, we introduce a semantic learning scheme to leverage the Transformer-temporal constraints, which are coherent to the SCD task, to guide the learning of semantic changes.
The resulting network (SCanNet) outperforms the baseline method in terms of both detection of critical semantic changes and semantic consistency in the obtained bi-temporal results.
arXiv Detail & Related papers (2022-12-10T08:49:19Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones.
We propose a novel hierarchical semantic-visual adaptation (HSVA) framework to align semantic and visual domains.
Experiments on four benchmark datasets demonstrate HSVA achieves superior performance on both conventional and generalized ZSL.
arXiv Detail & Related papers (2021-09-30T14:27:50Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
We propose a model of semantic memory for WSD in a meta-learning setting.
Our model is based on hierarchical variational inference and incorporates an adaptive memory update rule via a hypernetwork.
We show our model advances the state of the art in few-shot WSD, supports effective learning in extremely data scarce scenarios.
arXiv Detail & Related papers (2021-06-05T20:40:01Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
We leverage the rich semantic structures in WordNet to enhance the quality of multi-sense embeddings.
We derive new distributional semantic similarity measures for M-SE from prior ones.
We report evaluation results on 11 benchmark datasets involving WSD and Word Similarity tasks.
arXiv Detail & Related papers (2021-02-27T14:36:55Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
We propose a self-supervised approach to model lexical semantic change.
We show that our method can be used for the detection of semantic change with any alignment method.
We illustrate the utility of our techniques using experimental results on three different datasets.
arXiv Detail & Related papers (2021-01-30T18:59:43Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.