Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation
- URL: http://arxiv.org/abs/2008.01677v2
- Date: Wed, 5 Aug 2020 03:04:20 GMT
- Title: Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation
- Authors: Shuang Li, Binhui Xie, Jiashu Wu, Ying Zhao, Chi Harold Liu, Zhengming
Ding
- Abstract summary: We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
- Score: 67.37606333193357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous domain adaptation (HDA) transfers knowledge across source and
target domains that present heterogeneities e.g., distinct domain distributions
and difference in feature type or dimension. Most previous HDA methods tackle
this problem through learning a domain-invariant feature subspace to reduce the
discrepancy between domains. However, the intrinsic semantic properties
contained in data are under-explored in such alignment strategy, which is also
indispensable to achieve promising adaptability. In this paper, we propose a
Simultaneous Semantic Alignment Network (SSAN) to simultaneously exploit
correlations among categories and align the centroids for each category across
domains. In particular, we propose an implicit semantic correlation loss to
transfer the correlation knowledge of source categorical prediction
distributions to target domain. Meanwhile, by leveraging target pseudo-labels,
a robust triplet-centroid alignment mechanism is explicitly applied to align
feature representations for each category. Notably, a pseudo-label refinement
procedure with geometric similarity involved is introduced to enhance the
target pseudo-label assignment accuracy. Comprehensive experiments on various
HDA tasks across text-to-image, image-to-image and text-to-text successfully
validate the superiority of our SSAN against state-of-the-art HDA methods. The
code is publicly available at https://github.com/BIT-DA/SSAN.
Related papers
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Semantic-Aware Domain Generalized Segmentation [67.49163582961877]
Deep models trained on source domain lack generalization when evaluated on unseen target domains with different data distributions.
We propose a framework including two novel modules: Semantic-Aware Normalization (SAN) and Semantic-Aware Whitening (SAW)
Our approach shows significant improvements over existing state-of-the-art on various backbone networks.
arXiv Detail & Related papers (2022-04-02T09:09:59Z) - Semantic Concentration for Domain Adaptation [23.706231329913113]
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain.
A mainstream of DA methods is to align the feature distributions of the two domains.
We propose Semantic Concentration for Domain Adaptation to encourage the model to concentrate on the most principal features.
arXiv Detail & Related papers (2021-08-12T13:04:36Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain.
We present a semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment.
We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.
arXiv Detail & Related papers (2021-05-11T13:21:25Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
We propose a new UDA semantic segmentation approach based on domain assumption closeness to alleviate the above problems.
Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels.
Experiments conducted on GTA5 and SYNTHIA proved the effectiveness of our method.
arXiv Detail & Related papers (2021-05-07T10:24:18Z) - Learning Target Domain Specific Classifier for Partial Domain Adaptation [85.71584004185031]
Unsupervised domain adaptation (UDA) aims at reducing the distribution discrepancy when transferring knowledge from a labeled source domain to an unlabeled target domain.
This paper focuses on a more realistic UDA scenario, where the target label space is subsumed to the source label space.
arXiv Detail & Related papers (2020-08-25T02:28:24Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
arXiv Detail & Related papers (2020-03-18T04:43:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.