Plant Doctor: A hybrid machine learning and image segmentation software to quantify plant damage in video footage
- URL: http://arxiv.org/abs/2407.02853v1
- Date: Wed, 3 Jul 2024 07:11:18 GMT
- Title: Plant Doctor: A hybrid machine learning and image segmentation software to quantify plant damage in video footage
- Authors: Marc Josep Montagut Marques, Liu Mingxin, Kuri Thomas Shiojiri, Tomika Hagiwara, Kayo Hirose, Kaori Shiojiri, Shinjiro Umezu,
- Abstract summary: This study introduces an AI-based system for the automatic diagnosis of urban street plants using video footage obtained with accessible camera devices.
The system aims to monitor plant health on a day-to-day basis, aiding in the control of disease spreading in urban areas.
The results demonstrate the robustness and accuracy of the system in diagnosing leaf damage, with potential applications in large scale urban flora illness monitoring.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence has significantly advanced the automation of diagnostic processes, benefiting various fields including agriculture. This study introduces an AI-based system for the automatic diagnosis of urban street plants using video footage obtained with accessible camera devices. The system aims to monitor plant health on a day-to-day basis, aiding in the control of disease spreading in urban areas. By combining two machine vision algorithms, YOLOv8 and DeepSORT, the system efficiently identifies and tracks individual leaves, extracting the optimal images for health analysis. YOLOv8, chosen for its speed and computational efficiency, locates leaves, while DeepSORT ensures robust tracking in complex environments. For detailed health assessment, DeepLabV3Plus, a convolutional neural network, is employed to segment and quantify leaf damage caused by bacteria, pests, and fungi. The hybrid system, named Plant Doctor, has been trained and validated using a diverse dataset including footage from Tokyo urban plants. The results demonstrate the robustness and accuracy of the system in diagnosing leaf damage, with potential applications in large scale urban flora illness monitoring. This approach provides a non-invasive, efficient, and scalable solution for urban tree health management, supporting sustainable urban ecosystems.
Related papers
- RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing [2.1038216828914145]
Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress.
This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing.
arXiv Detail & Related papers (2025-01-18T01:04:02Z) - A Hybrid Technique for Plant Disease Identification and Localisation in Real-time [0.0]
This article proposes a novel technique for identifying and localising plant disease based on the Quad-Tree decomposition of an image.
The proposed algorithm significantly improves accuracy and faster convergence in high-resolution images with relatively low computational load.
arXiv Detail & Related papers (2024-12-27T15:20:45Z) - Seeing Through the Fog: A Cost-Effectiveness Analysis of Hallucination Detection Systems [45.3392300968787]
We evaluate hallucination detection systems using the diagnostic odds ratio (DOR) and cost-effectiveness metrics.
Our results indicate that although advanced models can perform better they come at a much higher cost.
arXiv Detail & Related papers (2024-11-08T02:06:41Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases
in Apple Plants [0.0]
Apple diseases, if not diagnosed early, can lead to massive resource loss and pose a serious threat to humans and animals who consume the infected apples.
Our work proposes an ensembled system of Xception, InceptionResNet, and MobileNet architectures to detect 5 different types of apple plant diseases.
The system has achieved outstanding results in multi-class and multi-label classification and can be used in a real-time setting to monitor large apple plantations.
arXiv Detail & Related papers (2022-10-01T15:40:04Z) - A workflow for segmenting soil and plant X-ray CT images with deep
learning in Googles Colaboratory [45.99558884106628]
We develop a modular workflow for applying convolutional neural networks to X-ray microCT images.
We show how parameters can be optimized to achieve best results using example scans from walnut leaves, almond flower buds, and a soil aggregate.
arXiv Detail & Related papers (2022-03-18T00:47:32Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Automated Pest Detection with DNN on the Edge for Precision Agriculture [0.0]
This paper presents an embedded system enhanced with machine learning (ML) functionalities, ensuring continuous detection of pest infestation inside fruit orchards.
Three different ML algorithms have been trained and deployed, highlighting the capabilities of the platform.
Results show how it is possible to automate the task of pest infestation for unlimited time without the farmer's intervention.
arXiv Detail & Related papers (2021-08-01T10:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.