An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases
in Apple Plants
- URL: http://arxiv.org/abs/2210.00298v1
- Date: Sat, 1 Oct 2022 15:40:04 GMT
- Title: An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases
in Apple Plants
- Authors: Kush Vora, Dishant Padalia
- Abstract summary: Apple diseases, if not diagnosed early, can lead to massive resource loss and pose a serious threat to humans and animals who consume the infected apples.
Our work proposes an ensembled system of Xception, InceptionResNet, and MobileNet architectures to detect 5 different types of apple plant diseases.
The system has achieved outstanding results in multi-class and multi-label classification and can be used in a real-time setting to monitor large apple plantations.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Apple diseases, if not diagnosed early, can lead to massive resource loss and
pose a serious threat to humans and animals who consume the infected apples.
Hence, it is critical to diagnose these diseases early in order to manage plant
health and minimize the risks associated with them. However, the conventional
approach of monitoring plant diseases entails manual scouting and analyzing the
features, texture, color, and shape of the plant leaves, resulting in delayed
diagnosis and misjudgments. Our work proposes an ensembled system of Xception,
InceptionResNet, and MobileNet architectures to detect 5 different types of
apple plant diseases. The model has been trained on the publicly available
Plant Pathology 2021 dataset and can classify multiple diseases in a given
plant leaf. The system has achieved outstanding results in multi-class and
multi-label classification and can be used in a real-time setting to monitor
large apple plantations to aid the farmers manage their yields effectively.
Related papers
- A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
The proposed approach integrates various types of Deep Learning techniques to extract robust and discriminative features from leaf images.
The dataset contains 10,000 leaf photos from ten classes of tomato illnesses and one class of healthy leaves.
AlexNet has an accuracy score of 87%, with the benefit of being quick and lightweight, making it appropriate for use on embedded systems.
arXiv Detail & Related papers (2024-10-01T19:32:45Z) - Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration [0.0]
Plant diseases significantly impact agricultural productivity, resulting in economic losses and food insecurity.
This study investigates advanced techniques in plant disease detection, emphasizing the integration of image processing, machine learning, deep learning methods, and mobile technologies.
High-resolution images of plant leaves were captured and analyzed using convolutional neural networks (CNNs) to detect symptoms of various diseases, such as blight, mildew, and rust.
The model was trained on a diverse dataset encompassing multiple crops and disease types, achieving 98.14% accuracy in disease diagnosis.
arXiv Detail & Related papers (2024-08-26T07:16:41Z) - Benchmarking In-the-wild Multimodal Disease Recognition and A Versatile Baseline [42.49727243388804]
We propose an in-the-wild multimodal plant disease recognition dataset.
It contains the largest number of disease classes but also text-based descriptions for each disease.
Our proposed dataset can be regarded as an ideal testbed for evaluating disease recognition methods in the real world.
arXiv Detail & Related papers (2024-08-06T11:49:13Z) - Adapter Learning in Pretrained Feature Extractor for Continual Learning
of Diseases [66.27889778566734]
Currently intelligent diagnosis systems lack the ability of continually learning to diagnose new diseases once deployed.
In particular, updating an intelligent diagnosis system with training data of new diseases would cause catastrophic forgetting of old disease knowledge.
An adapter-based Continual Learning framework called ACL is proposed to help effectively learn a set of new diseases.
arXiv Detail & Related papers (2023-04-18T15:01:45Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Improved Neural Network based Plant Diseases Identification [0.0]
The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet.
Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food.
In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf.
arXiv Detail & Related papers (2021-01-01T11:49:56Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z) - A Multi-Plant Disease Diagnosis Method using Convolutional Neural
Network [0.0]
This chapter investigates an optimal plant disease identification model combining the diagnosis of multiple plants.
We implement numerous popular convolutional neural network (CNN) architectures.
The experimental results validate that the Xception and DenseNet architectures perform better in multi-label plant disease classification tasks.
arXiv Detail & Related papers (2020-11-10T15:18:52Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.