Knowledge Composition using Task Vectors with Learned Anisotropic Scaling
- URL: http://arxiv.org/abs/2407.02880v2
- Date: Tue, 29 Oct 2024 05:10:30 GMT
- Title: Knowledge Composition using Task Vectors with Learned Anisotropic Scaling
- Authors: Frederic Z. Zhang, Paul Albert, Cristian Rodriguez-Opazo, Anton van den Hengel, Ehsan Abbasnejad,
- Abstract summary: We introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level.
We show that such linear combinations explicitly exploit the low intrinsicity of pre-trained models, with only a few coefficients being the learnable parameters.
We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives.
- Score: 51.4661186662329
- License:
- Abstract: Pre-trained models produce strong generic representations that can be adapted via fine-tuning. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labeled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a PEFT method, particularly with less data, and demonstrate its scalibility.
Related papers
- CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning [101.81127587760831]
Current fine-tuning methods build adapters widely of the context of downstream task to learn, or the context of important knowledge to maintain.
We propose CorDA, a Context-oriented Decomposition Adaptation method that builds learnable task-aware adapters.
Our method enables two options, the knowledge-preserved adaptation and the instruction-previewed adaptation.
arXiv Detail & Related papers (2024-06-07T19:10:35Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Scalable variable selection for two-view learning tasks with projection
operators [0.0]
We propose a novel variable selection method for two-view settings, or for vector-valued supervised learning problems.
Our framework is able to handle extremely large scale selection tasks, where number of data samples could be even millions.
arXiv Detail & Related papers (2023-07-04T08:22:05Z) - Editing Models with Task Arithmetic [69.97273155842966]
Changing how pre-trained models behave is a common practice when developing machine learning systems.
We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task.
We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition.
arXiv Detail & Related papers (2022-12-08T05:50:53Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - An Advance on Variable Elimination with Applications to Tensor-Based
Computation [11.358487655918676]
We present new results on the classical algorithm of variable elimination, which underlies many algorithms including for probabilistic inference.
The results relate to exploiting functional dependencies, allowing one to perform inference and learning efficiently on models that have very large treewidth.
arXiv Detail & Related papers (2020-02-21T14:17:44Z) - Graph-based Interpolation of Feature Vectors for Accurate Few-Shot
Classification [2.922007656878633]
In few-shot classification, the aim is to learn models able to discriminate classes using only a small number of labeled examples.
We propose a new method that relies on graphs only to interpolate feature vectors instead, resulting in a transductive learning setting.
arXiv Detail & Related papers (2020-01-27T15:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.