CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning
- URL: http://arxiv.org/abs/2406.05223v2
- Date: Sun, 27 Oct 2024 15:27:57 GMT
- Title: CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning
- Authors: Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon Song, Jianlong Wu, Liqiang Nie, Bernard Ghanem,
- Abstract summary: Current fine-tuning methods build adapters widely of the context of downstream task to learn, or the context of important knowledge to maintain.
We propose CorDA, a Context-oriented Decomposition Adaptation method that builds learnable task-aware adapters.
Our method enables two options, the knowledge-preserved adaptation and the instruction-previewed adaptation.
- Score: 101.81127587760831
- License:
- Abstract: Current parameter-efficient fine-tuning (PEFT) methods build adapters widely agnostic of the context of downstream task to learn, or the context of important knowledge to maintain. As a result, there is often a performance gap compared to full-parameter fine-tuning, and meanwhile the fine-tuned model suffers from catastrophic forgetting of the pre-trained world knowledge. In this paper, we propose CorDA, a Context-oriented Decomposition Adaptation method that builds learnable task-aware adapters from weight decomposition oriented by the context of downstream task or the world knowledge to maintain. Concretely, we collect a few data samples, and perform singular value decomposition for each linear layer of a pre-trained LLM multiplied by the covariance matrix of the input activation using these samples. The inverse of the covariance matrix is multiplied with the decomposed components to reconstruct the original weights. By doing so, the context of the representative samples is captured through deciding the factorizing orientation. Our method enables two options, the knowledge-preserved adaptation and the instruction-previewed adaptation. For the former, we use question-answering samples to obtain the covariance matrices, and use the decomposed components with the smallest $r$ singular values to initialize a learnable adapter, with the others frozen such that the world knowledge is better preserved. For the latter, we use the instruction data from the fine-tuning task, such as math or coding, to orientate the decomposition and train the largest $r$ components that most correspond to the task to learn. We conduct extensive experiments on Math, Code, and Instruction Following tasks.
Related papers
- Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks.
We modify specific context tokens, considering the unique structure of input and output formats.
Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss.
arXiv Detail & Related papers (2024-10-22T17:45:47Z) - Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
In-context learning of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples.
We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer.
We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context.
arXiv Detail & Related papers (2024-08-22T08:02:10Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Knowledge Composition using Task Vectors with Learned Anisotropic Scaling [51.4661186662329]
We introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level.
We show that such linear combinations explicitly exploit the low intrinsicity of pre-trained models, with only a few coefficients being the learnable parameters.
We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives.
arXiv Detail & Related papers (2024-07-03T07:54:08Z) - Towards Plastic and Stable Exemplar-Free Incremental Learning: A Dual-Learner Framework with Cumulative Parameter Averaging [12.168402195820649]
We propose a Dual-Learner framework with Cumulative.
Averaging (DLCPA)
We show that DLCPA outperforms several state-of-the-art exemplar-free baselines in both Task-IL and Class-IL settings.
arXiv Detail & Related papers (2023-10-28T08:48:44Z) - SPEC: Summary Preference Decomposition for Low-Resource Abstractive
Summarization [21.037841262371355]
We present a framework to transfer few-shot learning processes from source corpora to the target corpus.
Our methods achieve state-of-the-art performance on six diverse corpora with 30.11%/33.95%/27.51% and 26.74%/31.14%/24.48% average improvements on ROUGE-1/2/L under 10- and 100-example settings.
arXiv Detail & Related papers (2023-03-24T14:07:03Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Towards Sample-efficient Overparameterized Meta-learning [37.676063120293044]
An overarching goal in machine learning is to build a generalizable model with few samples.
This paper aims to demystify over parameterization for meta-learning.
We show that learning the optimal representation coincides with the problem of designing a task-aware regularization.
arXiv Detail & Related papers (2022-01-16T21:57:17Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.