論文の概要: An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation
- arxiv url: http://arxiv.org/abs/2407.02893v1
- Date: Wed, 3 Jul 2024 08:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:05:39.440451
- Title: An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation
- Title(参考訳): 前立腺分節領域適応のための不確かさ誘導型自己学習フレームワーク
- Authors: Zihao Luo, Xiangde Luo, Zijun Gao, Guotai Wang,
- Abstract要約: Source-free Domain Adaptation (SFDA)は、プライバシとセキュリティ上の問題に対処するために、深いセグメンテーションモデルを適用するための有望なテクニックである。
安定したドメイン適応を実現するための新しい不確実性誘導型自己学習(UGTST)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.061310311839856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have exhibited remarkable efficacy in accurately delineating the prostate for diagnosis and treatment of prostate diseases, but challenges persist in achieving robust generalization across different medical centers. Source-free Domain Adaptation (SFDA) is a promising technique to adapt deep segmentation models to address privacy and security concerns while reducing domain shifts between source and target domains. However, recent literature indicates that the performance of SFDA remains far from satisfactory due to unpredictable domain gaps. Annotating a few target domain samples is acceptable, as it can lead to significant performance improvement with a low annotation cost. Nevertheless, due to extremely limited annotation budgets, careful consideration is needed in selecting samples for annotation. Inspired by this, our goal is to develop Active Source-free Domain Adaptation (ASFDA) for medical image segmentation. Specifically, we propose a novel Uncertainty-guided Tiered Self-training (UGTST) framework, consisting of efficient active sample selection via entropy-based primary local peak filtering to aggregate global uncertainty and diversity-aware redundancy filter, coupled with a tiered self-learning strategy, achieves stable domain adaptation. Experimental results on cross-center prostate MRI segmentation datasets revealed that our method yielded marked advancements, with a mere 5% annotation, exhibiting an average Dice score enhancement of 9.78% and 7.58% in two target domains compared with state-of-the-art methods, on par with fully supervised learning. Code is available at:https://github.com/HiLab-git/UGTST
- Abstract(参考訳): 深層学習モデルは、前立腺疾患の診断と治療のための前立腺を正確に記述する上で顕著な効果を示したが、異なる医療センターで堅牢な一般化を達成する上での課題は続いている。
Source-free Domain Adaptation (SFDA)は、ソースとターゲットドメイン間のドメインシフトを減らしながら、プライバシとセキュリティ上の問題に対処するために、ディープセグメンテーションモデルを適用する、有望なテクニックである。
しかし、近年の文献では、SFDAの性能は予測不可能なドメインギャップのため、まだ十分ではないことが示されている。
アノテーションのコストが低く、パフォーマンスが大幅に向上する可能性があるため、いくつかの対象ドメインサンプルにアノテーションを付けることは許容できる。
それでも、アノテーションの予算が非常に限られているため、アノテーションのサンプルを選択する際には慎重な考慮が必要である。
これに触発されて、医用画像セグメンテーションのためのActive Source-free Domain Adaptation (ASFDA)の開発を目標としています。
具体的には,不確実性誘導型自己学習(UGTST)フレームワークを提案する。このフレームワークは,グローバル不確実性と多様性を考慮した冗長性フィルタを集約するために,エントロピーベースの一次局所ピークフィルタによる効率的なアクティブなサンプル選択と,連結した自己学習戦略と組み合わせて,安定したドメイン適応を実現する。
対象領域のDiceスコアは平均9.78%, 7.58%, 平均9.78%であった。
コードは、https://github.com/HiLab-git/UGTSTで入手できる。
関連論文リスト
- Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning [4.850478245721347]
我々はRL4Segを紹介した。RL4Segは革新的な強化学習フレームワークで、ターゲットドメインに専門的な注釈付きデータセットを組み込む必要がなくなる。
RL4Segは1万枚の未診断2D心エコー画像のターゲットデータセットを用いて、ターゲットドメインから220名の専門家検証対象のサブセットに対して99%の解剖学的妥当性を達成している。
論文 参考訳(メタデータ) (2024-06-25T19:26:39Z) - Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA)は、ラベル付きデータから学習した知識を、未ラベルデータのみを使用してターゲットドメインに転送する学習技術である。
本研究では,ロバストドメイン適応のための2段階トレーニングステージを提案する。
本稿では,ラベルのないターゲットデータを有効利用して擬似ラベルと擬似境界を生成する,ロバストな擬似ラベルと擬似境界(PLPB)手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T14:25:18Z) - Dual-Reference Source-Free Active Domain Adaptation for Nasopharyngeal
Carcinoma Tumor Segmentation across Multiple Hospitals [9.845637899896365]
鼻咽頭癌(Nasopharyngeal carcinoma, NPC)は頭頸部の悪性腫瘍である。
本稿では,Gross tumor Volume (GTV)セグメンテーションタスクの領域適応を容易にするために,新しい Sourece-Free Active Domain Adaptation (SFADA) フレームワークを提案する。
5つの病院から1057人のNPC患者からなる大規模臨床データセットを収集し,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-09-23T15:26:27Z) - Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
非教師なし領域適応(UDA)の設定下での解剖学的ランドマーク検出のための新しい枠組みを提案する。
このフレームワークは、自己学習とドメインの敵対的学習を活用して、適応中のドメインギャップに対処する。
脳波および肺のランドマーク検出実験は,領域間隙を広いマージンで低減し,他のUDA法より一貫して優れる手法の有効性を示した。
論文 参考訳(メタデータ) (2023-08-25T10:22:13Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
医用画像セグメンテーションのための2段階のソースフリードメイン適応(SFDA)フレームワークを提案する。
プロトタイプアンコールされた特徴アライメントの段階では,まず,事前学習した画素ワイド分類器の重みを原プロトタイプとして利用する。
そこで,本研究では,目標となる特徴とクラスプロトタイプとの整合性を期待するコストを最小化し,双方向輸送を導入する。
論文 参考訳(メタデータ) (2023-07-19T06:07:12Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
非教師なしドメイン適応(UDA)は、ラベル付きソースドメインからラベル付きヘテロジニアスターゲットドメインに学習した情報を移行するための重要なプロトコルである。
我々は、ソースドメインで訓練されたOSセグメントをターゲットドメインに適応させることにより、イメージセグメンテーションを目的とした「オフ・ザ・シェルフ(OS)」 UDA (OSUDA) を提案する。
論文 参考訳(メタデータ) (2022-09-16T13:13:50Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
改良されたアプローチは、深層学習の進歩で大きな成功をもたらしたが、それらは大量の地底深度アノテーションに依存している。
教師なしドメイン適応(UDA)は、教師付き学習の制約を緩和するため、ラベル付きソースデータからラベルなしターゲットデータに知識を転送する。
本稿では,その特徴空間をコンテンツやスタイルコンポーネントに分解することを学ぶための,学習特徴分解 for Adaptation (LFDA) と呼ばれる新しいMDEのためのUDA手法を提案する。
論文 参考訳(メタデータ) (2022-07-30T08:05:35Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
ソースフリー領域適応画像分割のための2段階のアプローチを提案する。
我々は,高エントロピー領域を抑えつつ,ターゲット固有の擬似ラベルを生成することに注力する。
第2段階では、タスク固有の表現にネットワークを適用することに重点を置いている。
論文 参考訳(メタデータ) (2022-03-29T17:50:22Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
半教師付き領域適応(SSDA)法は,大規模な画像分類タスクにおいて大きな可能性を示している。
本稿では、ドメイン間およびドメイン内セマンティック情報を効果的に伝達することにより、この問題に対処する新しい効果的な方法を提案する。
ソースコードと事前訓練されたモデルも間もなくリリースされる予定です。
論文 参考訳(メタデータ) (2020-12-04T14:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。