The More the Merrier? Navigating Accuracy vs. Energy Efficiency Design Trade-Offs in Ensemble Learning Systems
- URL: http://arxiv.org/abs/2407.02914v1
- Date: Wed, 3 Jul 2024 08:45:17 GMT
- Title: The More the Merrier? Navigating Accuracy vs. Energy Efficiency Design Trade-Offs in Ensemble Learning Systems
- Authors: Rafiullah Omar, Justus Bogner, Henry Muccini, Patricia Lago, Silverio MartÃnez-Fernández, Xavier Franch,
- Abstract summary: We analyzed three types of design decisions for ensemble learning regarding a potential trade-off between accuracy and energy consumption.
We measured accuracy (F1-score) and energy consumption in J (for both training and inference)
We recommend designing ensembles of small size (2 or maximum 3 models), using subset-based training, majority voting, and energy-efficient ML algorithms like decision trees, Naive Bayes, or KNN.
- Score: 13.462625365349663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Machine learning (ML) model composition is a popular technique to mitigate shortcomings of a single ML model and to design more effective ML-enabled systems. While ensemble learning, i.e., forwarding the same request to several models and fusing their predictions, has been studied extensively for accuracy, we have insufficient knowledge about how to design energy-efficient ensembles. Objective: We therefore analyzed three types of design decisions for ensemble learning regarding a potential trade-off between accuracy and energy consumption: a) ensemble size, i.e., the number of models in the ensemble, b) fusion methods (majority voting vs. a meta-model), and c) partitioning methods (whole-dataset vs. subset-based training). Methods: By combining four popular ML algorithms for classification in different ensembles, we conducted a full factorial experiment with 11 ensembles x 4 datasets x 2 fusion methods x 2 partitioning methods (176 combinations). For each combination, we measured accuracy (F1-score) and energy consumption in J (for both training and inference). Results: While a larger ensemble size significantly increased energy consumption (size 2 ensembles consumed 37.49% less energy than size 3 ensembles, which in turn consumed 26.96% less energy than the size 4 ensembles), it did not significantly increase accuracy. Furthermore, majority voting outperformed meta-model fusion both in terms of accuracy (Cohen's d of 0.38) and energy consumption (Cohen's d of 0.92). Lastly, subset-based training led to significantly lower energy consumption (Cohen's d of 0.91), while training on the whole dataset did not increase accuracy significantly. Conclusions: From a Green AI perspective, we recommend designing ensembles of small size (2 or maximum 3 models), using subset-based training, majority voting, and energy-efficient ML algorithms like decision trees, Naive Bayes, or KNN.
Related papers
- Predictor-Corrector Enhanced Transformers with Exponential Moving Average Coefficient Learning [73.73967342609603]
We introduce a predictor-corrector learning framework to minimize truncation errors.
We also propose an exponential moving average-based coefficient learning method to strengthen our higher-order predictor.
Our model surpasses a robust 3.8B DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters.
arXiv Detail & Related papers (2024-11-05T12:26:25Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives.
Here, we propose $textbfmulti-objective decoding (MOD)$, a decoding-time algorithm that outputs the next token from a linear combination of predictions.
We show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method.
arXiv Detail & Related papers (2024-06-27T02:46:30Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Context-Aware Ensemble Learning for Time Series [11.716677452529114]
We introduce a new approach using a meta learner that effectively combines the base model predictions via using a superset of the features that is the union of the base models' feature vectors instead of the predictions themselves.
Our model does not use the predictions of the base models as inputs to a machine learning algorithm, but choose the best possible combination at each time step based on the state of the problem.
arXiv Detail & Related papers (2022-11-30T10:36:13Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
We present the first ever mixture of variational approximations for a normalizing flow-based hierarchical variational autoencoder (VAE) with VampPrior and a PixelCNN decoder network.
We explain this cooperative behavior by drawing a novel connection between VI and adaptive importance sampling.
We obtain state-of-the-art results among VAE architectures in terms of negative log-likelihood on the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-09-30T15:01:35Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Ensemble Learning-Based Approach for Improving Generalization Capability
of Machine Reading Comprehension Systems [0.7614628596146599]
Machine Reading (MRC) is an active field in natural language processing with many successful developed models in recent years.
Despite their high in-distribution accuracy, these models suffer from two issues: high training cost and low out-of-distribution accuracy.
In this paper, we investigate the effect of ensemble learning approach to improve generalization of MRC systems without retraining a big model.
arXiv Detail & Related papers (2021-07-01T11:11:17Z) - Utilizing Ensemble Learning for Performance and Power Modeling and
Improvement of Parallel Cancer Deep Learning CANDLE Benchmarks [0.0]
In this paper, we utilize ensemble learning to combine linear, nonlinear, and tree-/rule-based machine learning methods.
We use the datasets collected for two parallel cancer deep learning CANDLE benchmarks, NT3 and P1B2.
We achieve up to 61.15% performance improvement and up to 62.58% energy saving for P1B2 and up to 55.81% performance improvement and up to 52.60% energy saving for NT3 on up to 24,576 cores.
arXiv Detail & Related papers (2020-11-12T21:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.