論文の概要: EgoFlowNet: Non-Rigid Scene Flow from Point Clouds with Ego-Motion Support
- arxiv url: http://arxiv.org/abs/2407.02920v1
- Date: Wed, 3 Jul 2024 08:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:55:24.595182
- Title: EgoFlowNet: Non-Rigid Scene Flow from Point Clouds with Ego-Motion Support
- Title(参考訳): EgoFlowNet: Ego-Motionをサポートしたポイントクラウドからの非リジッドシーンフロー
- Authors: Ramy Battrawy, René Schuster, Didier Stricker,
- Abstract要約: 本稿では,オブジェクトをベースとした抽象化を必要とせず,弱い教師付きで訓練されたポイントレベルのシーンフロー推定ネットワークを提案する。
提案手法は,エゴモーションとシーンフローの2つの並列分岐を暗黙的に駆動する二分分割マスクを推定する。
現実的なKITTIのシーンでは,地上点の存在下では,EgoFlowNetは最先端の手法よりも優れた性能を示している。
- 参考スコア(独自算出の注目度): 15.138542932078916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent weakly-supervised methods for scene flow estimation from LiDAR point clouds are limited to explicit reasoning on object-level. These methods perform multiple iterative optimizations for each rigid object, which makes them vulnerable to clustering robustness. In this paper, we propose our EgoFlowNet - a point-level scene flow estimation network trained in a weakly-supervised manner and without object-based abstraction. Our approach predicts a binary segmentation mask that implicitly drives two parallel branches for ego-motion and scene flow. Unlike previous methods, we provide both branches with all input points and carefully integrate the binary mask into the feature extraction and losses. We also use a shared cost volume with local refinement that is updated at multiple scales without explicit clustering or rigidity assumptions. On realistic KITTI scenes, we show that our EgoFlowNet performs better than state-of-the-art methods in the presence of ground surface points.
- Abstract(参考訳): 近年のLiDAR点雲からのシーンフロー推定法は,オブジェクトレベルの明示的推論に限られている。
これらの手法は各剛体オブジェクトに対して複数の反復最適化を行い、クラスタリングの堅牢性に弱い。
本稿では,オブジェクトを抽象化することなく,弱教師付きで訓練されたポイントレベルのシーンフロー推定ネットワークであるEgoFlowNetを提案する。
提案手法は,エゴモーションとシーンフローの2つの並列分岐を暗黙的に駆動する二分分割マスクを推定する。
従来の手法とは異なり、各ブランチに全ての入力ポイントを提供し、特徴抽出と損失にバイナリマスクを注意深く統合する。
また、クラスタリングや厳密性の仮定なしに複数のスケールで更新される局所的な改善を伴う共有コストボリュームも使用しています。
現実的なKITTIのシーンでは,地上点の存在下では,EgoFlowNetは最先端の手法よりも優れた性能を示している。
関連論文リスト
- SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving [18.88208422580103]
連続したLiDARスキャンで各点における3次元運動を予測する。
現在の最先端の手法は、シーンフローネットワークをトレーニングするために注釈付きデータを必要とする。
本研究では,効率的な動的分類を学習に基づくシーンフローパイプラインに統合するSeFlowを提案する。
論文 参考訳(メタデータ) (2024-07-01T18:22:54Z) - Let-It-Flow: Simultaneous Optimization of 3D Flow and Object Clustering [2.763111962660262]
実大規模原点雲列からの自己監督型3次元シーンフロー推定の問題点について検討する。
重なり合うソフトクラスタと非重なり合う固いクラスタを組み合わせられる新しいクラスタリング手法を提案する。
本手法は,複数の独立移動物体が互いに近接する複雑な動的シーンにおける流れの解消に優れる。
論文 参考訳(メタデータ) (2024-04-12T10:04:03Z) - CPCM: Contextual Point Cloud Modeling for Weakly-supervised Point Cloud
Semantic Segmentation [60.0893353960514]
疎アノテーションを用いた弱教師付きポイントクラウドセマンティックセマンティックセグメンテーションの課題について検討する。
本研究では,地域マスキング(RegionMask)戦略とコンテキストマスキングトレーニング(CMT)手法の2つの部分からなるコンテキストポイントクラウドモデリング(CPCM)手法を提案する。
論文 参考訳(メタデータ) (2023-07-19T04:41:18Z) - FreePoint: Unsupervised Point Cloud Instance Segmentation [72.64540130803687]
点クラウド上の教師なしクラス非依存のインスタンスセグメンテーションを探索するためのFreePointを提案する。
我々は、座標、色、そして自己監督の深い特徴を組み合わせることで、点の特徴を表現する。
ポイント機能に基づいて、ポイントクラウドを擬似ラベルとして粗いインスタンスマスクに分割し、ポイントクラウドインスタンスセグメンテーションモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-05-11T16:56:26Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
本研究では,PointFlowHopと呼ばれる3次元シーンフローの効率的な推定法を提案する。
ポイントフローホップは2つの連続する点雲を取り、第1点雲の各点の3次元フローベクトルを決定する。
シーンフロー推定タスクを,エゴモーション補償,オブジェクトアソシエーション,オブジェクトワイドモーション推定など,一連のサブタスクに分解する。
論文 参考訳(メタデータ) (2023-02-27T23:06:01Z) - Learning Scene Flow in 3D Point Clouds with Noisy Pseudo Labels [71.11151016581806]
そこで本研究では,3次元の3次元動きを点雲からキャプチャするシーンフロー手法を提案する。
提案手法は,最先端の自己教師型アプローチより優れるだけでなく,正確な接地構造を用いた教師型アプローチよりも優れる。
論文 参考訳(メタデータ) (2022-03-23T18:20:03Z) - Weakly Supervised Learning of Rigid 3D Scene Flow [81.37165332656612]
本研究では,剛体体として動くエージェント群によって説明できる3次元シーンを多用したデータ駆動シーンフロー推定アルゴリズムを提案する。
4種類の自律運転データセットにおいて,提案手法の有効性と一般化能力を示す。
論文 参考訳(メタデータ) (2021-02-17T18:58:02Z) - Adversarial Self-Supervised Scene Flow Estimation [15.278302535191866]
本研究では,自己監督型シーンフロー推定のためのメトリクス学習手法を提案する。
自己監督型シーンフロー推定のためのベンチマークであるScene Flow Sandboxについて概説する。
論文 参考訳(メタデータ) (2020-11-01T16:37:37Z) - Self-Supervised Learning of Non-Rigid Residual Flow and Ego-Motion [63.18340058854517]
動的3次元シーンに対する非剛性残留流とエゴ運動流の連成推定によるエンドツーエンドのシーンフロー学習法を提案する。
我々は、点クラウドシーケンスの時間的一貫性性に基づいて、自己監督的な信号で教師付きフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-09-22T11:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。