LoRA-Guard: Parameter-Efficient Guardrail Adaptation for Content Moderation of Large Language Models
- URL: http://arxiv.org/abs/2407.02987v1
- Date: Wed, 3 Jul 2024 10:38:40 GMT
- Title: LoRA-Guard: Parameter-Efficient Guardrail Adaptation for Content Moderation of Large Language Models
- Authors: Hayder Elesedy, Pedro M. Esperança, Silviu Vlad Oprea, Mete Ozay,
- Abstract summary: Guardrails have emerged as an alternative to safety alignment for content moderation of large language models (LLMs)
We introduce LoRA-Guard, a parameter-efficient guardrail adaptation method that relies on knowledge sharing between LLMs and guardrail models.
We show that LoRA-Guard outperforms existing approaches with 100-1000x lower parameter overhead while maintaining accuracy, enabling on-device content moderation.
- Score: 15.900125475191958
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Guardrails have emerged as an alternative to safety alignment for content moderation of large language models (LLMs). Existing model-based guardrails have not been designed for resource-constrained computational portable devices, such as mobile phones, more and more of which are running LLM-based applications locally. We introduce LoRA-Guard, a parameter-efficient guardrail adaptation method that relies on knowledge sharing between LLMs and guardrail models. LoRA-Guard extracts language features from the LLMs and adapts them for the content moderation task using low-rank adapters, while a dual-path design prevents any performance degradation on the generative task. We show that LoRA-Guard outperforms existing approaches with 100-1000x lower parameter overhead while maintaining accuracy, enabling on-device content moderation.
Related papers
- Lightweight Safety Guardrails Using Fine-tuned BERT Embeddings [12.80474396835751]
We develop a lightweight architecture for fine-tuning language models.
This method reduces the model size from LlamaGuard's 7 billion parameters to approximately 67 million.
It maintains comparable performance on the AEGIS safety benchmark.
arXiv Detail & Related papers (2024-11-21T18:27:25Z) - CoreGuard: Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge Deployment [43.53211005936295]
CoreGuard is a computation- and communication-efficient model protection approach against model stealing on edge devices.
We show that CoreGuard achieves the same security protection as the black-box security guarantees with negligible overhead.
arXiv Detail & Related papers (2024-10-16T08:14:24Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune large language models (LLMs)
In this paper, we propose a framework that adaptively retrieves and composes multiple LoRAs based on input prompts.
arXiv Detail & Related papers (2024-06-24T05:24:41Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
Existing methods for enhancing the safety of large language models (LLMs) are not directly transferable to LLM-powered agents.
We propose GuardAgent, the first LLM agent as a guardrail to other LLM agents.
GuardAgent comprises two steps: 1) creating a task plan by analyzing the provided guard requests, and 2) generating guardrail code based on the task plan and executing the code by calling APIs or using external engines.
arXiv Detail & Related papers (2024-06-13T14:49:26Z) - Safe LoRA: the Silver Lining of Reducing Safety Risks when Fine-tuning Large Language Models [51.20476412037321]
Fine-tuning large language models (LLMs) is necessary to enhance their performance for customized datasets, domain-specific tasks, or other private needs.
Safe LoRA is a one-liner patch to the original LoRA implementation by introducing the projection of LoRA weights from selected layers to the safety-aligned subspace.
Our experiments demonstrate that when fine-tuning on purely malicious data, Safe LoRA retains similar safety performance as the original aligned model.
arXiv Detail & Related papers (2024-05-27T05:04:05Z) - Continual Forgetting for Pre-trained Vision Models [70.51165239179052]
In real-world scenarios, selective information is expected to be continuously removed from a pre-trained model.
We propose Group Sparse LoRA (GS-LoRA) for efficient and effective deleting.
We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes.
arXiv Detail & Related papers (2024-03-18T07:33:56Z) - CA-LoRA: Adapting Existing LoRA for Compressed LLMs to Enable Efficient Multi-Tasking on Personal Devices [78.16679232748196]
We introduce a Compression-Aware LoRA (CA-LoRA) framework to transfer Large Language Models (LLMs) to other tasks.
Experiment results demonstrate that CA-LoRA outperforms the vanilla LoRA methods applied to a compressed LLM.
The source code of CA-LoRA is available at https://github.com/thunlp/CA-LoRA.
arXiv Detail & Related papers (2023-07-15T04:37:11Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
Low-rank adaption (LoRA) has emerged to fine-tune large language models (LLMs)
LoRAPrune is a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner.
LoRAPrune achieves a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.
arXiv Detail & Related papers (2023-05-28T15:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.