Continual Forgetting for Pre-trained Vision Models
- URL: http://arxiv.org/abs/2403.11530v2
- Date: Thu, 18 Jul 2024 09:23:36 GMT
- Title: Continual Forgetting for Pre-trained Vision Models
- Authors: Hongbo Zhao, Bolin Ni, Haochen Wang, Junsong Fan, Fei Zhu, Yuxi Wang, Yuntao Chen, Gaofeng Meng, Zhaoxiang Zhang,
- Abstract summary: In real-world scenarios, selective information is expected to be continuously removed from a pre-trained model.
We propose Group Sparse LoRA (GS-LoRA) for efficient and effective deleting.
We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes.
- Score: 70.51165239179052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners. These requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify two key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. To address them, we propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we use LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. GS-LoRA is effective, parameter-efficient, data-efficient, and easy to implement. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes. Codes will be released on \url{https://github.com/bjzhb666/GS-LoRA}.
Related papers
- LoRA Unlearns More and Retains More (Student Abstract) [0.0]
PruneLoRA reduces the need for large-scale parameter updates by applying low-rank updates to the model.
We leverage LoRA to selectively modify a subset of the pruned model's parameters, thereby reducing the computational cost, memory requirements and improving the model's ability to retain performance on the remaining classes.
arXiv Detail & Related papers (2024-11-16T16:47:57Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune large language models (LLMs)
In this paper, we propose a framework that adaptively retrieves and composes multiple LoRAs based on input prompts.
arXiv Detail & Related papers (2024-06-24T05:24:41Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z) - Foundation Policies with Hilbert Representations [54.44869979017766]
We propose an unsupervised framework to pre-train generalist policies from unlabeled offline data.
Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment.
Our experiments show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion.
arXiv Detail & Related papers (2024-02-23T19:09:10Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - DyLoRA: Parameter Efficient Tuning of Pre-trained Models using Dynamic
Search-Free Low-Rank Adaptation [18.922066770467914]
Low-rank adapters (LoRA) keep the main pretrained weights of the model frozen and just introduce some learnable truncated SVD modules to the model.
While LoRA blocks are parameter-efficient, they suffer from two major problems: first, the size of these blocks is fixed and cannot be modified after training.
We introduce a dynamic low-rank adaptation (DyLoRA) technique to address these two problems together.
arXiv Detail & Related papers (2022-10-14T06:29:22Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
We propose a novel Federated Zero-Shot Learning FedZSL framework.
FedZSL learns a central model from the decentralized data residing on edge devices.
The effectiveness and robustness of FedZSL are demonstrated by extensive experiments conducted on three zero-shot benchmark datasets.
arXiv Detail & Related papers (2022-09-05T14:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.