論文の概要: Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0
- arxiv url: http://arxiv.org/abs/2407.03005v1
- Date: Wed, 3 Jul 2024 11:04:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:35:46.933914
- Title: Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0
- Title(参考訳): ニューラルスピーチモデルにおけるヒューマンライクな言語バイアス:Wav2Vec2.0における音韻分類と音韻制約
- Authors: Marianne de Heer Kloots, Willem Zuidema,
- Abstract要約: We study how how Wav2Vec2solvs phonotactic constraints。
我々は/l/と/r/の音響連続体に音を合成し、制御された文脈に埋め込む。
人間と同様に、Wav2Vec2モデルは、このようなあいまいな音を処理する際に、音素的に許容できるカテゴリーに対してバイアスを示す。
- 参考スコア(独自算出の注目度): 0.11510009152620666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What do deep neural speech models know about phonology? Existing work has examined the encoding of individual linguistic units such as phonemes in these models. Here we investigate interactions between units. Inspired by classic experiments on human speech perception, we study how Wav2Vec2 resolves phonotactic constraints. We synthesize sounds on an acoustic continuum between /l/ and /r/ and embed them in controlled contexts where only /l/, only /r/, or neither occur in English. Like humans, Wav2Vec2 models show a bias towards the phonotactically admissable category in processing such ambiguous sounds. Using simple measures to analyze model internals on the level of individual stimuli, we find that this bias emerges in early layers of the model's Transformer module. This effect is amplified by ASR finetuning but also present in fully self-supervised models. Our approach demonstrates how controlled stimulus designs can help localize specific linguistic knowledge in neural speech models.
- Abstract(参考訳): ディープ・ニューラル・スピーチ・モデルは音韻学について何を知っているのか?
既存の研究は、これらのモデルにおける音素などの個々の言語単位の符号化について検討してきた。
ここでは、単位間の相互作用について検討する。
人間の音声知覚に関する古典的な実験から着想を得て,Wav2Vec2が音韻論的制約をどう解決するかを考察した。
我々は、/l/ と /r/ の音響連続体に音を合成し、/l/ のみ、/r/ のみ、あるいは英語では起こらないような制御された文脈に埋め込む。
人間と同様に、Wav2Vec2モデルは、このようなあいまいな音を処理する際に、音素的に許容できるカテゴリーに対してバイアスを示す。
このバイアスはモデルのTransformerモジュールの初期層に現れる。
この効果はASRファインタニングによって増幅されるが、完全に自己制御されたモデルにも現れる。
提案手法は,制御刺激設計がニューラル音声モデルにおける特定の言語知識のローカライズにどのように役立つかを示す。
関連論文リスト
- Perception of Phonological Assimilation by Neural Speech Recognition Models [3.4173734484549625]
本稿では、ニューラルネットワーク認識モデルであるWav2Vec2が、同化音をどのように知覚するかを考察する。
心理言語学的刺激を用いて、様々な言語文脈がモデル出力の補償パターンにどのように影響するかを分析する。
論文 参考訳(メタデータ) (2024-06-21T15:58:22Z) - Do self-supervised speech and language models extract similar
representations as human brain? [2.390915090736061]
自己教師付き学習(SSL)によって訓練された音声と言語モデルは、音声と言語知覚の間の脳活動と強い整合性を示す。
我々は2つの代表的なSSLモデルであるWav2Vec2.0とGPT-2の脳波予測性能を評価した。
論文 参考訳(メタデータ) (2023-10-07T01:39:56Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
既存のシステムは韻律と言語内容の相関を無視し、変換された音声の自然度を低下させる。
自己教師付き離散音声単位を言語表現として活用するカスケードモジュラーシステムを提案する。
実験により,本システムは,自然性,知性,話者伝達性,韻律伝達性において,従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2022-11-12T00:54:09Z) - Is neural language acquisition similar to natural? A chronological
probing study [0.0515648410037406]
本稿では,MultiBERTやT5といったトランスフォーマー英語モデルの時系列探索について述べる。
コーパスの学習過程において,モデルが学習した言語に関する情報を比較した。
その結果,1)訓練の初期段階に言語情報を取得すること,2)両言語モデルが様々な言語レベルから様々な特徴を捉える能力を示した。
論文 参考訳(メタデータ) (2022-07-01T17:24:11Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z) - Do self-supervised speech models develop human-like perception biases? [11.646802225841153]
本稿では,3種類の最先端自己教師型モデル(wav2vec 2.0, HuBERT, CPC)の表現空間について検討する。
CPCモデルは母国語の影響が小さいことを示すが、wav2vec 2.0とHuBERTは言語固有のものではない普遍的な音声認識空間を発達させている。
教師付き電話認識装置の予測との比較では、教師付き3つのモデルが比較的きめ細かい知覚現象を捉えているのに対し、教師付きモデルは聞き手の母国語が知覚に与える影響を捉えるのに優れていることが示唆されている。
論文 参考訳(メタデータ) (2022-05-31T14:21:40Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
我々は、自己教師型音声表現学習の進歩に乗じて、人間の聴覚システムの最先端モデルを作成する。
これらの結果から,ヒト大脳皮質における音声処理の異なる段階に関連する情報の階層構造を,自己教師型モデルで効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2022-05-27T22:04:02Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - What all do audio transformer models hear? Probing Acoustic
Representations for Language Delivery and its Structure [64.54208910952651]
オーディオトランスフォーマーモデル mockingjay と wave2vec2.0 を比較した。
音声モデルのテキスト表面、構文、および意味的特徴に対する理解を調査します。
ネイティブ、非ネイティブ、合成、読み取り、自発的な音声データセットの完全な設定でこれを行います。
論文 参考訳(メタデータ) (2021-01-02T06:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。