What Affects the Stability of Tool Learning? An Empirical Study on the Robustness of Tool Learning Frameworks
- URL: http://arxiv.org/abs/2407.03007v1
- Date: Wed, 3 Jul 2024 11:06:05 GMT
- Title: What Affects the Stability of Tool Learning? An Empirical Study on the Robustness of Tool Learning Frameworks
- Authors: Chengrui Huang, Zhengliang Shi, Yuntao Wen, Xiuying Chen, Peng Han, Shen Gao, Shuo Shang,
- Abstract summary: This paper explores the impact of both internal and external factors on the performance of tool learning frameworks.
We find several insightful conclusions for future work, including the observation that LLMs can benefit significantly from increased trial and exploration.
- Score: 33.51887014808227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tool learning methods have enhanced the ability of large language models (LLMs) to interact with real-world applications. Many existing works fine-tune LLMs or design prompts to enable LLMs to select appropriate tools and correctly invoke them to meet user requirements. However, it is observed in previous works that the performance of tool learning varies from tasks, datasets, training settings, and algorithms. Without understanding the impact of these factors, it can lead to inconsistent results, inefficient model deployment, and suboptimal tool utilization, ultimately hindering the practical integration and scalability of LLMs in real-world scenarios. Therefore, in this paper, we explore the impact of both internal and external factors on the performance of tool learning frameworks. Through extensive experiments on two benchmark datasets, we find several insightful conclusions for future work, including the observation that LLMs can benefit significantly from increased trial and exploration. We believe our empirical study provides a new perspective for future tool learning research.
Related papers
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
This paper focuses on bridging the comprehension gap between Large Language Models and external tools.
We propose a novel framework, DRAFT, aimed at Dynamically refining tool documentation.
Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality.
arXiv Detail & Related papers (2024-10-10T17:58:44Z) - Learning Evolving Tools for Large Language Models [44.25796648300785]
We propose ToolEVO to enhance the adaptive and reflective capabilities of large language models (LLMs) against tool variability.
By leveraging Monte Carlo Tree Search, ToolEVO facilitates active exploration and interaction of LLMs within dynamic environments.
We also introduce ToolQA-D, a benchmark specifically designed to evaluate the impact of tool variability.
arXiv Detail & Related papers (2024-10-09T07:14:45Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of
Large Language Models in Real-world Scenarios [48.38419686697733]
We propose ToolEyes, a fine-grained system tailored for the evaluation of large language models' tool learning capabilities in authentic scenarios.
The system meticulously examines seven real-world scenarios, analyzing five dimensions crucial to LLMs in tool learning.
ToolEyes incorporates a tool library boasting approximately 600 tools, serving as an intermediary between LLMs and the physical world.
arXiv Detail & Related papers (2024-01-01T12:49:36Z) - Confucius: Iterative Tool Learning from Introspection Feedback by
Easy-to-Difficult Curriculum [42.36892453363961]
We propose a novel tool learning framework to train large language models (LLMs) to use complicated tools in real-world scenarios.
We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum.
We then propose the Iterative Self-instruct from Introspective Feedback to dynamically construct the dataset to improve the ability to use the complicated tool.
arXiv Detail & Related papers (2023-08-27T07:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.