論文の概要: Vision-driven Automated Mobile GUI Testing via Multimodal Large Language Model
- arxiv url: http://arxiv.org/abs/2407.03037v1
- Date: Wed, 3 Jul 2024 11:58:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-04 14:26:01.206273
- Title: Vision-driven Automated Mobile GUI Testing via Multimodal Large Language Model
- Title(参考訳): マルチモーダル大言語モデルによる視覚駆動型モバイルGUIテスト
- Authors: Zhe Liu, Cheng Li, Chunyang Chen, Junjie Wang, Boyu Wu, Yawen Wang, Jun Hu, Qing Wang,
- Abstract要約: 本稿では,マルチモーダル大規模言語モデルを用いて,非クラッシュな機能的バグを検出する視覚駆動型GUIテスト手法を提案する。
GUIテキスト情報を抽出し、スクリーンショットと整列して視覚プロンプトを形成することで、MLLMはGUIコンテキストを理解することができる。
VisionDroidは、Google Playの29の新しいバグを特定し、そのうち19が確認され、修正されている。
- 参考スコア(独自算出の注目度): 27.97964877860671
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the advancement of software rendering techniques, GUI pages in mobile apps now encompass a wealth of visual information, where the visual semantics of each page contribute to the overall app logic, presenting new challenges to software testing. Despite the progress in automated Graphical User Interface (GUI) testing, the absence of testing oracles has constrained its efficacy to identify only crash bugs with evident abnormal signals. Nonetheless, there are still a considerable number of non-crash bugs, ranging from unexpected behaviors to misalignments, often evading detection by existing techniques. While these bugs can exhibit visual cues that serve as potential testing oracles, they often entail a sequence of screenshots, and detecting them necessitates an understanding of the operational logic among GUI page transitions, which is challenging traditional techniques. Considering the remarkable performance of Multimodal Large Language Models (MLLM) in visual and language understanding, this paper proposes a vision-driven automated GUI testing approach VisionDroid to detect non-crash functional bugs with MLLM. It begins by extracting GUI text information and aligning it with screenshots to form a vision prompt, enabling MLLM to understand GUI context. The function-aware explorer then employs MLLM for deeper and function-oriented GUI page exploration, while the logic-aware bug detector segments the entire exploration history into logically cohesive parts and prompts the MLLM for bug detection. We evaluate VisionDroid on three datasets and compare it with 10 baselines, demonstrating its excellent performance. The ablation study further proves the contribution of each module. Moreover, VisionDroid identifies 29 new bugs on Google Play, of which 19 have been confirmed and fixed.
- Abstract(参考訳): ソフトウェアレンダリング技術の進歩により、モバイルアプリのGUIページは豊富なビジュアル情報を含み、各ページの視覚的セマンティクスがアプリケーションロジック全体に貢献し、ソフトウェアテストに新たな課題を提示している。
グラフィカルユーザインタフェース(GUI)の自動テストの進歩にもかかわらず、オーラクルテストの欠如により、異常信号のあるクラッシュバグのみを特定する効果が制限されている。
それでも、予期せぬ振る舞いからミスアライメントまで、既存のテクニックによる検出を回避している、かなりの数の非クラッシュバグがある。
これらのバグは、潜在的なテストオラクルとして機能する視覚的な手がかりを示すことができるが、スクリーンショットのシーケンスを伴い、GUIページ遷移間の操作ロジックを理解する必要があることを検知する。
視覚・言語理解におけるマルチモーダル言語モデル(MLLM)の顕著な性能を考慮し,視覚駆動型自動GUIテストアプローチであるVisionDroidを提案し,MLLMによる非クラッシュな機能的バグを検出する。
GUIテキスト情報を抽出し、スクリーンショットと整列して視覚プロンプトを形成することで、MLLMはGUIコンテキストを理解することができる。
関数認識エクスプローラーはMLLMをより深く関数指向のGUIページ探索に使用し、論理認識バグ検出器は、探索履歴全体を論理的に結合した部分に分割し、MLLMにバグ検出を促す。
VisionDroidを3つのデータセットで評価し、10のベースラインと比較し、その優れた性能を示した。
アブレーション研究は、各加群の寄与をさらに証明している。
さらにVisionDroidは、Google Playの29の新しいバグを特定し、そのうち19が確認され、修正されている。
関連論文リスト
- Forensics-Bench: A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models [53.55128042938329]
Forensics-Benchは、新しい偽検出評価ベンチマークスイートである。
63,292件の厳密にキュレートされたマルチチョイスの視覚的質問からなり、112件の独特な偽造検出をカバーしている。
GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnetの22のオープンソースLVLMと3つのプロプライエタリモデルについて徹底的な評価を行った。
論文 参考訳(メタデータ) (2025-03-19T09:21:44Z) - Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection [56.66677293607114]
オープンセットのリアクティブかつアクティブな障害検出のためのCode-as-Monitor(CaM)を提案する。
モニタリングの精度と効率を高めるために,制約関連エンティティを抽象化する制約要素を導入する。
実験により、CaMは28.7%高い成功率を達成し、厳しい乱れの下で実行時間を31.8%短縮することが示された。
論文 参考訳(メタデータ) (2024-12-05T18:58:27Z) - ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - Leveraging Large Vision Language Model For Better Automatic Web GUI Testing [7.480576630392405]
本稿では,最初のLVLM駆動のエンドツーエンドWebテスト技術であるVETLを提案する。
LVLMのシーン理解機能により、VETLはローカルコンテキストに焦点を当てた有効な意味のあるテキスト入力を生成することができる。
関連GUI要素の選択は視覚的質問応答問題として定式化され、LVLMは入力ボックスと関連する要素の間の論理的接続をキャプチャする。
論文 参考訳(メタデータ) (2024-10-16T01:37:58Z) - GUI Action Narrator: Where and When Did That Action Take Place? [19.344324166716245]
我々は,4,189種類の動画キャプションサンプルからなるGUIアクションの動画キャプションベンチマークを開発した。
本課題は,自然映像のキャプションに比較して,独特な課題を呈する。
GUI アクションデータセット textbfAct2Cap と GUI ビデオキャプションのためのシンプルなフレームワーク textbfGUI Narrator を紹介する。
論文 参考訳(メタデータ) (2024-06-19T17:22:11Z) - VDebugger: Harnessing Execution Feedback for Debugging Visual Programs [103.61860743476933]
V Debuggerは、視覚プログラムのローカライズとデバッギングのために、段階的に実行を追跡することで訓練された、批評家とリファインダーのフレームワークである。
Vデバッガは、詳細な実行フィードバックを活用してプログラムエラーを特定し、修正する。
6つのデータセットの評価は、Vデバッガの有効性を示し、ダウンストリームタスクの精度が最大3.2%向上したことを示している。
論文 参考訳(メタデータ) (2024-06-19T11:09:16Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - Artificial intelligence for context-aware visual change detection in software test automation [5.174422378856116]
本稿では,ソフトウェアテスト自動化における視覚的変化検出のためのグラフベースの新しい手法を提案する。
本手法は,ソフトウェアスクリーンショットからUI制御を正確に識別し,制御間の文脈的・空間的関係を表すグラフを構築する。
様々な単純で複雑なテストシナリオにおいて、視覚的ソフトウェアの変更を正確に検出できる。
論文 参考訳(メタデータ) (2024-05-01T21:22:33Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
MLLM(Multimodal large language model)は、人間のような自律型言語エージェントが現実世界の環境と相互作用する可能性を示している。
包括的環境認識(CEP)と条件付き行動予測(CAP)の2つの新しいアプローチを備えた包括的認知型LLMエージェントCoCo-Agentを提案する。
AITW と META-GUI ベンチマークにおいて,我々のエージェントは実シナリオで有望な性能を示す新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-19T08:29:03Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection with Multimodal Large Language Models [61.8876114116716]
MLLM(Multimodal large language model)は、視覚関連タスクにおいて強力な機能を示す。
しかし、顔攻撃検出タスクにおける微妙な視覚的偽造や偽造の手がかりを検出する能力は、まだ探索されていない。
フェーススプーフィングと偽造検出のためのMLLM評価のためのベンチマークShiELDを導入する。
論文 参考訳(メタデータ) (2024-02-06T17:31:36Z) - Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI
Testing via Functionality-aware Decisions [23.460051600514806]
GPTDroidは、モバイルアプリ向けのQ&AベースのGUIテスティングフレームワークである。
機能認識型メモリプロンプト機構を導入する。
アクティビティのカバレッジが32%向上し、より高速な速度で31%のバグを検出する。
論文 参考訳(メタデータ) (2023-10-24T12:30:26Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
より広い範囲のタスクは、生成モデルによって処理されると、事実エラーを含むリスクが増大する。
大規模言語モデルにより生成されたテキストの事実誤りを検出するためのタスクおよびドメインに依存しないフレームワークであるFacToolを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:51Z) - Prompting Is All You Need: Automated Android Bug Replay with Large Language Models [28.69675481931385]
本稿では,バグ報告から迅速なエンジニアリングを通じてバグを自動的に再現する,新しい軽量なアプローチであるAdbGPTを提案する。
AdbGPTは、LLMから人間の知識と論理的推論を引き出すために、少数ショットの学習と連鎖推論を活用する。
この評価は,253.6秒で81.3%のバグレポートを再現するAdbGPTの有効性と有効性を示すものである。
論文 参考訳(メタデータ) (2023-06-03T03:03:52Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
GPTDroid を提案し,GUI ページ情報を LLM に渡してテストスクリプトを抽出することにより,大規模言語モデルにモバイルアプリとのチャットを依頼する。
そこで我々はGUIページの静的コンテキストと反復テストプロセスの動的コンテキストを抽出する。
Google Playの86のアプリ上でGPTDroidを評価し、そのアクティビティカバレッジは71%で、最高のベースラインよりも32%高く、最高のベースラインよりも高速で36%多くのバグを検出することができます。
論文 参考訳(メタデータ) (2023-05-16T13:46:52Z) - ADPTriage: Approximate Dynamic Programming for Bug Triage [0.0]
オンラインバグトリアージタスクのためのマルコフ決定プロセス(MDP)モデルを開発した。
私たちはADPTriageと呼ばれるADPベースのバグトリアージソリューションを提供しています。
以上の結果から, 代入精度と固定時間の観点から, ミオピックアプローチよりも有意な改善が見られた。
論文 参考訳(メタデータ) (2022-11-02T04:42:21Z) - Infrared: A Meta Bug Detector [10.541969253100815]
我々はメタバグ検出と呼ばれる新しいアプローチを提案し、既存の学習ベースのバグ検出よりも3つの重要な利点を提供している。
我々のメタバグ検出装置(MBD)は,ヌルポインタの参照,配列インデックスのアウト・オブ・バウンド,ファイルハンドルのリーク,さらには並列プログラムにおけるデータ競合など,さまざまなバグの発見に有効であることを示す。
論文 参考訳(メタデータ) (2022-09-18T09:08:51Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。