論文の概要: Vision-driven Automated Mobile GUI Testing via Multimodal Large Language Model
- arxiv url: http://arxiv.org/abs/2407.03037v1
- Date: Wed, 3 Jul 2024 11:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:26:01.206273
- Title: Vision-driven Automated Mobile GUI Testing via Multimodal Large Language Model
- Title(参考訳): マルチモーダル大言語モデルによる視覚駆動型モバイルGUIテスト
- Authors: Zhe Liu, Cheng Li, Chunyang Chen, Junjie Wang, Boyu Wu, Yawen Wang, Jun Hu, Qing Wang,
- Abstract要約: 本稿では,マルチモーダル大規模言語モデルを用いて,非クラッシュな機能的バグを検出する視覚駆動型GUIテスト手法を提案する。
GUIテキスト情報を抽出し、スクリーンショットと整列して視覚プロンプトを形成することで、MLLMはGUIコンテキストを理解することができる。
VisionDroidは、Google Playの29の新しいバグを特定し、そのうち19が確認され、修正されている。
- 参考スコア(独自算出の注目度): 27.97964877860671
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the advancement of software rendering techniques, GUI pages in mobile apps now encompass a wealth of visual information, where the visual semantics of each page contribute to the overall app logic, presenting new challenges to software testing. Despite the progress in automated Graphical User Interface (GUI) testing, the absence of testing oracles has constrained its efficacy to identify only crash bugs with evident abnormal signals. Nonetheless, there are still a considerable number of non-crash bugs, ranging from unexpected behaviors to misalignments, often evading detection by existing techniques. While these bugs can exhibit visual cues that serve as potential testing oracles, they often entail a sequence of screenshots, and detecting them necessitates an understanding of the operational logic among GUI page transitions, which is challenging traditional techniques. Considering the remarkable performance of Multimodal Large Language Models (MLLM) in visual and language understanding, this paper proposes a vision-driven automated GUI testing approach VisionDroid to detect non-crash functional bugs with MLLM. It begins by extracting GUI text information and aligning it with screenshots to form a vision prompt, enabling MLLM to understand GUI context. The function-aware explorer then employs MLLM for deeper and function-oriented GUI page exploration, while the logic-aware bug detector segments the entire exploration history into logically cohesive parts and prompts the MLLM for bug detection. We evaluate VisionDroid on three datasets and compare it with 10 baselines, demonstrating its excellent performance. The ablation study further proves the contribution of each module. Moreover, VisionDroid identifies 29 new bugs on Google Play, of which 19 have been confirmed and fixed.
- Abstract(参考訳): ソフトウェアレンダリング技術の進歩により、モバイルアプリのGUIページは豊富なビジュアル情報を含み、各ページの視覚的セマンティクスがアプリケーションロジック全体に貢献し、ソフトウェアテストに新たな課題を提示している。
グラフィカルユーザインタフェース(GUI)の自動テストの進歩にもかかわらず、オーラクルテストの欠如により、異常信号のあるクラッシュバグのみを特定する効果が制限されている。
それでも、予期せぬ振る舞いからミスアライメントまで、既存のテクニックによる検出を回避している、かなりの数の非クラッシュバグがある。
これらのバグは、潜在的なテストオラクルとして機能する視覚的な手がかりを示すことができるが、スクリーンショットのシーケンスを伴い、GUIページ遷移間の操作ロジックを理解する必要があることを検知する。
視覚・言語理解におけるマルチモーダル言語モデル(MLLM)の顕著な性能を考慮し,視覚駆動型自動GUIテストアプローチであるVisionDroidを提案し,MLLMによる非クラッシュな機能的バグを検出する。
GUIテキスト情報を抽出し、スクリーンショットと整列して視覚プロンプトを形成することで、MLLMはGUIコンテキストを理解することができる。
関数認識エクスプローラーはMLLMをより深く関数指向のGUIページ探索に使用し、論理認識バグ検出器は、探索履歴全体を論理的に結合した部分に分割し、MLLMにバグ検出を促す。
VisionDroidを3つのデータセットで評価し、10のベースラインと比較し、その優れた性能を示した。
アブレーション研究は、各加群の寄与をさらに証明している。
さらにVisionDroidは、Google Playの29の新しいバグを特定し、そのうち19が確認され、修正されている。
関連論文リスト
- GUI Action Narrator: Where and When Did That Action Take Place? [19.344324166716245]
我々は,4,189種類の動画キャプションサンプルからなるGUIアクションの動画キャプションベンチマークを開発した。
本課題は,自然映像のキャプションに比較して,独特な課題を呈する。
GUI アクションデータセット textbfAct2Cap と GUI ビデオキャプションのためのシンプルなフレームワーク textbfGUI Narrator を紹介する。
論文 参考訳(メタデータ) (2024-06-19T17:22:11Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - Artificial intelligence for context-aware visual change detection in software test automation [5.174422378856116]
本稿では,ソフトウェアテスト自動化における視覚的変化検出のためのグラフベースの新しい手法を提案する。
本手法は,ソフトウェアスクリーンショットからUI制御を正確に識別し,制御間の文脈的・空間的関係を表すグラフを構築する。
様々な単純で複雑なテストシナリオにおいて、視覚的ソフトウェアの変更を正確に検出できる。
論文 参考訳(メタデータ) (2024-05-01T21:22:33Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
MLLM(Multimodal large language model)は、人間のような自律型言語エージェントが現実世界の環境と相互作用する可能性を示している。
包括的環境認識(CEP)と条件付き行動予測(CAP)の2つの新しいアプローチを備えた包括的認知型LLMエージェントCoCo-Agentを提案する。
AITW と META-GUI ベンチマークにおいて,我々のエージェントは実シナリオで有望な性能を示す新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-19T08:29:03Z) - Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI
Testing via Functionality-aware Decisions [23.460051600514806]
GPTDroidは、モバイルアプリ向けのQ&AベースのGUIテスティングフレームワークである。
機能認識型メモリプロンプト機構を導入する。
アクティビティのカバレッジが32%向上し、より高速な速度で31%のバグを検出する。
論文 参考訳(メタデータ) (2023-10-24T12:30:26Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
より広い範囲のタスクは、生成モデルによって処理されると、事実エラーを含むリスクが増大する。
大規模言語モデルにより生成されたテキストの事実誤りを検出するためのタスクおよびドメインに依存しないフレームワークであるFacToolを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:51Z) - Multi-modal Queried Object Detection in the Wild [72.16067634379226]
MQ-Detは、現実世界のオブジェクト検出のための効率的なアーキテクチャと事前学習戦略設計である。
既存の言語クエリのみの検出器に視覚クエリを組み込む。
MQ-Detのシンプルで効果的なアーキテクチャとトレーニング戦略設計は、ほとんどの言語でクエリされたオブジェクト検出器と互換性がある。
論文 参考訳(メタデータ) (2023-05-30T12:24:38Z) - Contextual Object Detection with Multimodal Large Language Models [78.30374204127418]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
GPTDroid を提案し,GUI ページ情報を LLM に渡してテストスクリプトを抽出することにより,大規模言語モデルにモバイルアプリとのチャットを依頼する。
そこで我々はGUIページの静的コンテキストと反復テストプロセスの動的コンテキストを抽出する。
Google Playの86のアプリ上でGPTDroidを評価し、そのアクティビティカバレッジは71%で、最高のベースラインよりも32%高く、最高のベースラインよりも高速で36%多くのバグを検出することができます。
論文 参考訳(メタデータ) (2023-05-16T13:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。