Accelerated Inference for Partially Observed Markov Processes using Automatic Differentiation
- URL: http://arxiv.org/abs/2407.03085v1
- Date: Wed, 3 Jul 2024 13:06:46 GMT
- Title: Accelerated Inference for Partially Observed Markov Processes using Automatic Differentiation
- Authors: Kevin Tan, Giles Hooker, Edward L. Ionides,
- Abstract summary: Automatic differentiation (AD) has driven recent advances in machine learning.
We show how to embed two existing AD particle filter methods in a theoretical framework that provides an extension to a new class of algorithms.
We develop likelihood algorithms suited to the Monte Carlo properties of the AD gradient estimate.
- Score: 4.872049174955585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic differentiation (AD) has driven recent advances in machine learning, including deep neural networks and Hamiltonian Markov Chain Monte Carlo methods. Partially observed nonlinear stochastic dynamical systems have proved resistant to AD techniques because widely used particle filter algorithms yield an estimated likelihood function that is discontinuous as a function of the model parameters. We show how to embed two existing AD particle filter methods in a theoretical framework that provides an extension to a new class of algorithms. This new class permits a bias/variance tradeoff and hence a mean squared error substantially lower than the existing algorithms. We develop likelihood maximization algorithms suited to the Monte Carlo properties of the AD gradient estimate. Our algorithms require only a differentiable simulator for the latent dynamic system; by contrast, most previous approaches to AD likelihood maximization for particle filters require access to the system's transition probabilities. Numerical results indicate that a hybrid algorithm that uses AD to refine a coarse solution from an iterated filtering algorithm show substantial improvement on current state-of-the-art methods for a challenging scientific benchmark problem.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Differentiable Interacting Multiple Model Particle Filtering [24.26220422457388]
We propose a sequential Monte Carlo algorithm for parameter learning when the studied model exhibits random discontinuous jumps in behaviour.
We adopt the emerging framework of differentiable particle filtering, wherein parameters are trained by gradient descent.
We establish new theoretical results of the presented algorithms and demonstrate superior numerical performance compared to the previous state-of-the-art algorithms.
arXiv Detail & Related papers (2024-10-01T12:05:18Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Momentum Particle Maximum Likelihood [2.4561590439700076]
We propose an analogous dynamical-systems-inspired approach to minimizing the free energy functional.
By discretizing the system, we obtain a practical algorithm for Maximum likelihood estimation in latent variable models.
The algorithm outperforms existing particle methods in numerical experiments and compares favourably with other MLE algorithms.
arXiv Detail & Related papers (2023-12-12T14:53:18Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
We propose an online learning algorithm for a class of machine learning models under a separable approximation framework.
We show that the proposed algorithm produces more robust and test performance when compared to other popular learning algorithms.
arXiv Detail & Related papers (2023-05-12T13:53:03Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Iterated Block Particle Filter for High-dimensional Parameter Learning:
Beating the Curse of Dimensionality [0.6599344783327054]
temporal disease learning for high-dimensional, partially observed, and nonlinear processes is a methodological challenge.
We propose the iterated block particle filter (IBPF) for learning high-dimensional inference parameters over graphical state space models.
arXiv Detail & Related papers (2021-10-20T19:36:55Z) - An Adaptive EM Accelerator for Unsupervised Learning of Gaussian Mixture
Models [0.7340845393655052]
We propose an Anderson Acceleration scheme for the adaptive Expectation-Maximization (EM) algorithm for unsupervised learning.
The proposed algorithm is able to determine the optimal number of mixture components autonomously, and converges to the optimal solution much faster than its non-accelerated version.
arXiv Detail & Related papers (2020-09-26T22:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.