論文の概要: On Generalization for Generative Flow Networks
- arxiv url: http://arxiv.org/abs/2407.03105v1
- Date: Wed, 3 Jul 2024 13:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:06:19.751293
- Title: On Generalization for Generative Flow Networks
- Title(参考訳): 生成フローネットワークの一般化について
- Authors: Anas Krichel, Nikolay Malkin, Salem Lahlou, Yoshua Bengio,
- Abstract要約: 生成フローネットワーク(GFlowNets)は、非正規化確率分布からのサンプリングの課題に対処するために設計された革新的な学習パラダイムとして登場した。
本稿では,GFlowNetsの文脈で一般化を形式化し,一般化と安定性を結びつけるとともに,これらのモデルの能力を評価する実験を行い,報酬関数の未知の部分を明らかにする。
- 参考スコア(独自算出の注目度): 54.20924253330039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Flow Networks (GFlowNets) have emerged as an innovative learning paradigm designed to address the challenge of sampling from an unnormalized probability distribution, called the reward function. This framework learns a policy on a constructed graph, which enables sampling from an approximation of the target probability distribution through successive steps of sampling from the learned policy. To achieve this, GFlowNets can be trained with various objectives, each of which can lead to the model s ultimate goal. The aspirational strength of GFlowNets lies in their potential to discern intricate patterns within the reward function and their capacity to generalize effectively to novel, unseen parts of the reward function. This paper attempts to formalize generalization in the context of GFlowNets, to link generalization with stability, and also to design experiments that assess the capacity of these models to uncover unseen parts of the reward function. The experiments will focus on length generalization meaning generalization to states that can be constructed only by longer trajectories than those seen in training.
- Abstract(参考訳): Generative Flow Networks (GFlowNets) は、報酬関数と呼ばれる非正規化確率分布からのサンプリングの課題に対処するために設計された革新的な学習パラダイムとして登場した。
このフレームワークは構築されたグラフ上のポリシーを学習し、学習されたポリシーから連続的にサンプリングするステップを通じて、対象確率分布の近似からサンプリングすることができる。
これを実現するために、GFlowNetsはさまざまな目標をトレーニングすることができる。
GFlowNetsの願望的な強みは、報酬関数内の複雑なパターンを識別し、報酬関数の新規で目に見えない部分に効果的に一般化する能力にある。
本稿では,GFlowNetsの文脈で一般化を形式化し,一般化と安定性を結びつけるとともに,これらのモデルの能力を評価する実験を行い,報酬関数の未知の部分を明らかにする。
実験は長さの一般化、つまり訓練で見られるものよりも長い軌道でしか構築できない状態への一般化に焦点を当てる。
関連論文リスト
- Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets [27.33222647437964]
Generative Flow Networks (GFlowNets) は、報酬に確率のあるオブジェクトを逐次生成するポリシーを学ぶためのアモータイズされたサンプリング手法である。
GFlowNetsは、標準的な強化学習手法とは対照的に、多種多様な高次比例オブジェクトを生成する優れた能力を示す。
近年、目標条件付きGFlowNetを学習し、タスクが指定した目標を達成できる単一のGFlowNetをトレーニングすることを目的として、様々な有用なプロパティを取得するための研究が進められている。
本稿では,これらの課題に対処するため,RBS(Retrospective Backward Synthesis)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T09:44:10Z) - Pre-Training and Fine-Tuning Generative Flow Networks [61.90529626590415]
本稿では,GFlowNetの報酬なし事前学習のための新しいアプローチを提案する。
自己指導型問題としてトレーニングをフレーミングすることで,候補空間の探索を学習する結果条件付きGFlowNetを提案する。
事前学習したOC-GFNモデルにより、下流タスクにおける新しい報酬関数をサンプリングできるポリシーを直接抽出できることを示す。
論文 参考訳(メタデータ) (2023-10-05T09:53:22Z) - Stochastic Generative Flow Networks [89.34644133901647]
生成フローネットワーク(GFlowNets)は「制御としての推論」のレンズを通して複雑な構造をサンプリングすることを学ぶ
既存のGFlowNetsは決定論的環境にのみ適用でき、動的処理によるより一般的なタスクではフェールする。
本稿では,GFlowNetsを環境に拡張する新しいアルゴリズムであるGFlowNetsを紹介する。
論文 参考訳(メタデータ) (2023-02-19T03:19:40Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks(GFlowNets)は、エージェントが一連の意思決定ステップを通じて複雑な構造を生成するためのポリシーを学ぶ確率的サンプルの新たなファミリーである。
本研究では,GFlowNetの分散パラダイムを採用し,各フロー関数を分散化し,学習中により情報的な学習信号を提供する。
GFlowNet学習アルゴリズムは,リスク不確実性のあるシナリオを扱う上で不可欠な,リスクに敏感なポリシーを学習することができる。
論文 参考訳(メタデータ) (2023-02-11T22:06:17Z) - Generative Augmented Flow Networks [88.50647244459009]
GFlowNetsに中間報酬を組み込むためにGAFlowNets(Generative Augmented Flow Networks)を提案する。
GAFlowNetsは、エッジベースとステートベース固有の報酬を共同で活用して、探索を改善することができる。
論文 参考訳(メタデータ) (2022-10-07T03:33:56Z) - Trajectory balance: Improved credit assignment in GFlowNets [63.687669765579585]
従来提案したGFlowNetの学習目標,フローマッチング,詳細なバランスは,長いアクションシーケンスをまたいだ非効率な信用伝播の傾向が示唆された。
本稿では,GFlowNetsの新しい学習目標であるトラジェクトリバランスを,従来使用されていた目的に対して,より効率的な代替手段として提案する。
4つの異なる領域の実験において、GFlowNet収束のための軌道バランス目標の利点、生成されたサンプルの多様性、長いアクションシーケンスや大きなアクション空間に対する堅牢性を実証的に実証した。
論文 参考訳(メタデータ) (2022-01-31T14:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。