$L_p$-norm Distortion-Efficient Adversarial Attack
- URL: http://arxiv.org/abs/2407.03115v1
- Date: Wed, 3 Jul 2024 14:00:33 GMT
- Title: $L_p$-norm Distortion-Efficient Adversarial Attack
- Authors: Chao Zhou, Yuan-Gen Wang, Zi-jia Wang, Xiangui Kang,
- Abstract summary: Current adversarial attack methods only consider one of the distortions among $L$-norm, $L$-norm, and $L_infty$-norm.
We propose a novel $L_p$-norm distortion-efficient adversarial attack, which not only owns the least $L$-norm but also significantly reduces the $L_infty$-norm distortion.
- Score: 13.03797700146213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples have shown a powerful ability to make a well-trained model misclassified. Current mainstream adversarial attack methods only consider one of the distortions among $L_0$-norm, $L_2$-norm, and $L_\infty$-norm. $L_0$-norm based methods cause large modification on a single pixel, resulting in naked-eye visible detection, while $L_2$-norm and $L_\infty$-norm based methods suffer from weak robustness against adversarial defense since they always diffuse tiny perturbations to all pixels. A more realistic adversarial perturbation should be sparse and imperceptible. In this paper, we propose a novel $L_p$-norm distortion-efficient adversarial attack, which not only owns the least $L_2$-norm loss but also significantly reduces the $L_0$-norm distortion. To this aim, we design a new optimization scheme, which first optimizes an initial adversarial perturbation under $L_2$-norm constraint, and then constructs a dimension unimportance matrix for the initial perturbation. Such a dimension unimportance matrix can indicate the adversarial unimportance of each dimension of the initial perturbation. Furthermore, we introduce a new concept of adversarial threshold for the dimension unimportance matrix. The dimensions of the initial perturbation whose unimportance is higher than the threshold will be all set to zero, greatly decreasing the $L_0$-norm distortion. Experimental results on three benchmark datasets show that under the same query budget, the adversarial examples generated by our method have lower $L_0$-norm and $L_2$-norm distortion than the state-of-the-art. Especially for the MNIST dataset, our attack reduces 8.1$\%$ $L_2$-norm distortion meanwhile remaining 47$\%$ pixels unattacked. This demonstrates the superiority of the proposed method over its competitors in terms of adversarial robustness and visual imperceptibility.
Related papers
- $σ$-zero: Gradient-based Optimization of $\ell_0$-norm Adversarial Examples [14.17412770504598]
We show that $ell_infty$-norm constraints can be used to craft input perturbations.
We propose a novel $ell_infty$-norm attack called $sigma$-norm.
It outperforms all competing adversarial attacks in terms of success, size, and efficiency.
arXiv Detail & Related papers (2024-02-02T20:08:11Z) - Robust Nonparametric Regression under Poisoning Attack [13.470899588917716]
An adversarial attacker can modify the values of up to $q$ samples from a training dataset of size $N$.
Our initial solution is an M-estimator based on Huber loss minimization.
The final estimate is nearly minimax optimal for arbitrary $q$, up to a $ln N$ factor.
arXiv Detail & Related papers (2023-05-26T09:33:17Z) - PDPGD: Primal-Dual Proximal Gradient Descent Adversarial Attack [92.94132883915876]
State-of-the-art deep neural networks are sensitive to small input perturbations.
Many defence methods have been proposed that attempt to improve robustness to adversarial noise.
evaluating adversarial robustness has proven to be extremely challenging.
arXiv Detail & Related papers (2021-06-03T01:45:48Z) - Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints [29.227720674726413]
We propose a fast minimum-norm (FMN) attack that works with different $ell_p$-norm perturbation models.
Experiments show that FMN significantly outperforms existing attacks in terms of convergence speed and time.
arXiv Detail & Related papers (2021-02-25T12:56:26Z) - Towards Defending Multiple $\ell_p$-norm Bounded Adversarial
Perturbations via Gated Batch Normalization [120.99395850108422]
Existing adversarial defenses typically improve model robustness against individual specific perturbations.
Some recent methods improve model robustness against adversarial attacks in multiple $ell_p$ balls, but their performance against each perturbation type is still far from satisfactory.
We propose Gated Batch Normalization (GBN) to adversarially train a perturbation-invariant predictor for defending multiple $ell_p bounded adversarial perturbations.
arXiv Detail & Related papers (2020-12-03T02:26:01Z) - Almost Tight L0-norm Certified Robustness of Top-k Predictions against
Adversarial Perturbations [78.23408201652984]
Top-k predictions are used in many real-world applications such as machine learning as a service, recommender systems, and web searches.
Our work is based on randomized smoothing, which builds a provably robust classifier via randomizing an input.
For instance, our method can build a classifier that achieves a certified top-3 accuracy of 69.2% on ImageNet when an attacker can arbitrarily perturb 5 pixels of a testing image.
arXiv Detail & Related papers (2020-11-15T21:34:44Z) - GreedyFool: Distortion-Aware Sparse Adversarial Attack [138.55076781355206]
Modern deep neural networks (DNNs) are vulnerable to adversarial samples.
Sparse adversarial samples can fool the target model by only perturbing a few pixels.
We propose a novel two-stage distortion-aware greedy-based method dubbed as "GreedyFool"
arXiv Detail & Related papers (2020-10-26T17:59:07Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
We provide the first result of the optimal minimax guarantees for the excess risk for adversarially robust classification.
Results are stated in terms of the Adversarial Signal-to-Noise Ratio (AdvSNR), which generalizes a similar notion for standard linear classification to the adversarial setting.
arXiv Detail & Related papers (2020-06-29T21:06:52Z) - Toward Adversarial Robustness via Semi-supervised Robust Training [93.36310070269643]
Adrial examples have been shown to be the severe threat to deep neural networks (DNNs)
We propose a novel defense method, the robust training (RT), by jointly minimizing two separated risks ($R_stand$ and $R_rob$)
arXiv Detail & Related papers (2020-03-16T02:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.