$σ$-zero: Gradient-based Optimization of $\ell_0$-norm Adversarial Examples
- URL: http://arxiv.org/abs/2402.01879v2
- Date: Wed, 02 Oct 2024 12:42:56 GMT
- Title: $σ$-zero: Gradient-based Optimization of $\ell_0$-norm Adversarial Examples
- Authors: Antonio Emanuele Cinà, Francesco Villani, Maura Pintor, Lea Schönherr, Battista Biggio, Marcello Pelillo,
- Abstract summary: We show that $ell_infty$-norm constraints can be used to craft input perturbations.
We propose a novel $ell_infty$-norm attack called $sigma$-norm.
It outperforms all competing adversarial attacks in terms of success, size, and efficiency.
- Score: 14.17412770504598
- License:
- Abstract: Evaluating the adversarial robustness of deep networks to gradient-based attacks is challenging. While most attacks consider $\ell_2$- and $\ell_\infty$-norm constraints to craft input perturbations, only a few investigate sparse $\ell_1$- and $\ell_0$-norm attacks. In particular, $\ell_0$-norm attacks remain the least studied due to the inherent complexity of optimizing over a non-convex and non-differentiable constraint. However, evaluating adversarial robustness under these attacks could reveal weaknesses otherwise left untested with more conventional $\ell_2$- and $\ell_\infty$-norm attacks. In this work, we propose a novel $\ell_0$-norm attack, called $\sigma$-zero, which leverages a differentiable approximation of the $\ell_0$ norm to facilitate gradient-based optimization, and an adaptive projection operator to dynamically adjust the trade-off between loss minimization and perturbation sparsity. Extensive evaluations using MNIST, CIFAR10, and ImageNet datasets, involving robust and non-robust models, show that $\sigma$-zero finds minimum $\ell_0$-norm adversarial examples without requiring any time-consuming hyperparameter tuning, and that it outperforms all competing sparse attacks in terms of success rate, perturbation size, and efficiency.
Related papers
- $L_p$-norm Distortion-Efficient Adversarial Attack [13.03797700146213]
Current adversarial attack methods only consider one of the distortions among $L$-norm, $L$-norm, and $L_infty$-norm.
We propose a novel $L_p$-norm distortion-efficient adversarial attack, which not only owns the least $L$-norm but also significantly reduces the $L_infty$-norm distortion.
arXiv Detail & Related papers (2024-07-03T14:00:33Z) - GSE: Group-wise Sparse and Explainable Adversarial Attacks [20.068273625719943]
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations.
Recent efforts have replaced this norm with a sparsity regularizer, such as the nuclear group norm, to craft group-wise adversarial attacks.
We present a two-phase algorithm that generates group-wise attacks within semantically meaningful images.
arXiv Detail & Related papers (2023-11-29T08:26:18Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
We first propose a novel method for generating composite adversarial examples.
Our method can find the optimal attack composition by utilizing component-wise projected gradient descent.
We then propose generalized adversarial training (GAT) to extend model robustness from $ell_p$-ball to composite semantic perturbations.
arXiv Detail & Related papers (2022-02-09T02:41:56Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
Sparse adversarial attacks can fool deep networks (DNNs) by only perturbing a few pixels.
Recent efforts combine it with another l_infty perturbation on magnitudes.
We propose a homotopy algorithm to tackle the sparsity and neural perturbation framework.
arXiv Detail & Related papers (2021-06-10T20:11:36Z) - PDPGD: Primal-Dual Proximal Gradient Descent Adversarial Attack [92.94132883915876]
State-of-the-art deep neural networks are sensitive to small input perturbations.
Many defence methods have been proposed that attempt to improve robustness to adversarial noise.
evaluating adversarial robustness has proven to be extremely challenging.
arXiv Detail & Related papers (2021-06-03T01:45:48Z) - Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints [29.227720674726413]
We propose a fast minimum-norm (FMN) attack that works with different $ell_p$-norm perturbation models.
Experiments show that FMN significantly outperforms existing attacks in terms of convergence speed and time.
arXiv Detail & Related papers (2021-02-25T12:56:26Z) - Understanding Frank-Wolfe Adversarial Training [1.2183405753834557]
Adversarial Training (AT) is a technique that approximately solves a robust optimization problem to minimize the worst-case loss.
A Frank-Wolfe adversarial training approach is presented and is shown to provide competitive level of robustness as PGD-AT.
arXiv Detail & Related papers (2020-12-22T21:36:52Z) - Towards Defending Multiple $\ell_p$-norm Bounded Adversarial
Perturbations via Gated Batch Normalization [120.99395850108422]
Existing adversarial defenses typically improve model robustness against individual specific perturbations.
Some recent methods improve model robustness against adversarial attacks in multiple $ell_p$ balls, but their performance against each perturbation type is still far from satisfactory.
We propose Gated Batch Normalization (GBN) to adversarially train a perturbation-invariant predictor for defending multiple $ell_p bounded adversarial perturbations.
arXiv Detail & Related papers (2020-12-03T02:26:01Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
We provide the first result of the optimal minimax guarantees for the excess risk for adversarially robust classification.
Results are stated in terms of the Adversarial Signal-to-Noise Ratio (AdvSNR), which generalizes a similar notion for standard linear classification to the adversarial setting.
arXiv Detail & Related papers (2020-06-29T21:06:52Z) - Toward Adversarial Robustness via Semi-supervised Robust Training [93.36310070269643]
Adrial examples have been shown to be the severe threat to deep neural networks (DNNs)
We propose a novel defense method, the robust training (RT), by jointly minimizing two separated risks ($R_stand$ and $R_rob$)
arXiv Detail & Related papers (2020-03-16T02:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.