Foundations and Frontiers of Graph Learning Theory
- URL: http://arxiv.org/abs/2407.03125v2
- Date: Mon, 8 Jul 2024 01:22:37 GMT
- Title: Foundations and Frontiers of Graph Learning Theory
- Authors: Yu Huang, Min Zhou, Menglin Yang, Zhen Wang, Muhan Zhang, Jie Wang, Hong Xie, Hao Wang, Defu Lian, Enhong Chen,
- Abstract summary: Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
- Score: 81.39078977407719
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm. With these models being usually characterized by intuition-driven design or highly intricate components, placing them within the theoretical analysis framework to distill the core concepts, helps understand the key principles that drive the functionality better and guide further development. Given this surge in interest, this article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models. Encompassing discussions on fundamental aspects such as expressiveness power, generalization, optimization, and unique phenomena such as over-smoothing and over-squashing, this piece delves into the theoretical foundations and frontier driving the evolution of graph learning. In addition, this article also presents several challenges and further initiates discussions on possible solutions.
Related papers
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
We introduce SCORE, a unified graph reasoning framework that effectively generalizes diverse graph tasks using zero-shot learning.
We evaluate SCORE using 38 diverse graph datasets, covering node-level, link-level, and graph-level tasks across multiple domains.
arXiv Detail & Related papers (2024-10-16T14:26:08Z) - Understanding Deep Learning via Notions of Rank [5.439020425819001]
This thesis puts forth notions of rank as key for developing a theory of deep learning.
In particular, we establish that gradient-based training can induce an implicit regularization towards low rank for several neural network architectures.
Practical implications of our theory for designing explicit regularization schemes and data preprocessing algorithms are presented.
arXiv Detail & Related papers (2024-08-04T18:47:55Z) - Future Directions in the Theory of Graph Machine Learning [49.049992612331685]
Machine learning on graphs, especially using graph neural networks (GNNs), has seen a surge in interest due to the wide availability of graph data.
Despite their practical success, our theoretical understanding of the properties of GNNs remains highly incomplete.
arXiv Detail & Related papers (2024-02-03T22:55:31Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
This extended abstract describes a framework for analyzing the expressiveness, learning, and (structural) generalization of hypergraph neural networks (HyperGNNs)
Specifically, we focus on how HyperGNNs can learn from finite datasets and generalize structurally to graph reasoning problems of arbitrary input sizes.
arXiv Detail & Related papers (2023-03-09T18:42:18Z) - A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge
Graphs [6.379544211152605]
Graph neural networks are prominent models for representation learning over graph-structured data.
Our goal is to provide a systematic understanding of the landscape of graph neural networks for knowledge graphs.
arXiv Detail & Related papers (2023-02-04T17:40:03Z) - Weisfeiler and Leman Go Relational [4.29881872550313]
We investigate the limitations in the expressive power of the well-known GCN and Composition GCN architectures.
We introduce the $k$-RN architecture that provably overcomes the limitations of the above two architectures.
arXiv Detail & Related papers (2022-11-30T15:56:46Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem.
Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph.
We give an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix.
arXiv Detail & Related papers (2022-07-04T04:09:50Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.